Crypto for PETs — Part 1

Jorge Cuellar

Q>
o for PETe - Part 1

Key space K ={0,1}" where nis "small"
Shared Key k
Public Key of A pka Pa
Private Key of A Ska pa
Message space M o={0,1}*
Cipher space ®
Key generator G ()=~ K
Encryption function & : {X x M} — 6
Decryption function @ : {H x €} — M
Random choice x—
Run algorithm A X + A(i)

A .
Or:x < i

Notation, Comments

Key space (1) A ={0,1}" where nis "small"
Message space (2) . ={0,1}*
Key generator B) YY:0—>X

1. The length of the key is considered small

» but the number of keys is large (brute-force attacks are impossible)

2. The length of a message can be larger than the length of the key
» usually it is larger, but — in some cases — it is not

3. % is a randomized algorithm that takes no input

» You may imagine () as a set that only contains one element
> whose name is irrelevant

> You may also write () = {e}

Notation, Comments

Random choice

4) x+
Runalgorithm A (5) x < A(i) or x < i
1. x + & means:

» let x be uniformly randomly choose out of the set
. A .
2. x < A(i) or x <= i means:

> let x be the output of the possibly non-deterministic but
> efficient algorithm A running on input

Jorge Cuslar

DA
Gryptofor PETs Part 1

4

Crypto Literature: Books

The following are links (you can click on them)
» Jonathan Katz and Yehuda Lindell. An Introduction to Modern
Cryptography

» Oded Goldreich. Foundations of Cryptography.

http://www.cs.umd.edu/%7Ejkatz/imc.html
http://www.cs.umd.edu/%7Ejkatz/imc.html
http://www.wisdom.weizmann.ac.il/%7Eoded/foc-book.html

Crypto Literature: Lecture notes

The following are links (you can click on them)
» Haitner-Applebaum
» Ran Canetti

» Foundation of Cryptography (The 2008 course) and
» On Chernoff and Chebyshev bounds.

Salil Vadhan Introduction to Cryptography.
Luca Trevisan Cryptography.

v

v

v

Yehuda lindell Foundations of Cryptography.

v

Ryan O’Donnell Probability and Computating

oooooooooooooooooooooooooooooo

http://www.cs.tau.ac.il/%7Eiftachh/Courses/FOC/Spring14/index.html
http://www.cs.tau.ac.il/%7Ecanetti/f08.html
http://people.csail.mit.edu/ronitt/COURSE/S07/lec25.pdf
http://people.seas.harvard.edu/%7Esalil/cs120/
http://www.cs.berkeley.edu/%7Edaw/cs276/
http://u.cs.biu.ac.il/%7Elindell/89-856/main-89-856.html
https://www.cs.cmu.edu/%7Eodonnell/papers/probability-and-computing-lecture-notes.pdf

PETS Literature

See the web pages of following people:
» George Danezis, Univ College London
» Mark D. Ryan, Birmingham
» Claudia Diaz, KU Leuven
» Seda Gurses, Princeton
» Frank Kargl, Ulm
» Alessandro Acquisti, CMU
» Carmela Troncoso, EPFL
» Frank Piessens, KU Leuven
» Nicola Zannone, Eindhoven
» Simone Fischer Huebner, Karlstad

ooooooooooooooooooooooooooooooo

PETS Literature

See the pages of following Seminars/Workshops

>

>

>

IEEE Security & Privacy
Annual Privacy Forum

IEEE International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom)

ACM Conference on Data and Application Security and Privacy
Annual ACM workshop on Privacy in the Electronic Society
CPDP (Computers, Privacy and Data Protection)

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

PETS Literature

See the following Projects

>

>

PRIPARE (EU)

Harvard University Privacy Tools Project
(https://privacytools.seas.harvard.edu)

https://privacyflag.eu/
https://abc4trust.eu/

PRIME Project FP6-IST. Privacy and Identity Management for
Europe

PrimeLife - Privacy and Identity Management in Europe for Life
(primelife.ercim.eu)

The Free Haven Project (https://freehaven.net/)

vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

https://privacytools.seas.harvard.edu
https://privacyflag.eu/
https://abc4trust.eu/
https://freehaven.net/

The flavor of security: PRG

A random string x of length |m|, the size of m, is required
» |x| = |m| could be relatively large, say n := |x| = 10° bits

1. The key x is very long: how to distibute securely the key?
2. Finding random numbers may be difficult
» obtaining ¢ = 100 random bits is much easier than n = 10° bits

... are deterministic algorithms that

» given ¢ random bits, say £ = 100
» construct n = 10% > ¢ = 100 bits that
o e g DA
» "you can'’t distinguish from random" oper e

The flavor of security: PRG
Compare a truly random and a pseudo-random string

x €4{0,1}" + {0,1}"

x€{0,1}" & (k « {0,1}9
We have two distributions over {0, 1}":

1. choose uniformly a random string in {0, 1}"
» 9 = uniform({0,1}")

2. In the second case: first choose uniformly a "seed" (or "key") in
{01}
» then map that key to an element of {0, 1}",

> via a deterministic efficient algorithm ¥ : {0,1}* — {0,1}"
> Py = W(uniform({0, 1}%))
Those two distributions are very different, yet:

» the PRG V¥ is secure & 9 ~ 9,

» that is, the distributions are "computationallg indi%tingujshabzle“

E DA
Jorge Guslar Coyptofor PETs — Par

1"

Dy = D{x | x + {0,1}"} =~ Do = 2{U(k) | k + {0,1}'}

0,1}"
x &Lk {0,1}¢

"From a helicopter", they are clearly distinguishable, but - samples
from them are not

[m]

=

Jorge Cuelk

DA

Dy = D{x | x < {0,1}"} = Do = Z{W(K) | k < {0,1}'}
Note that the two distributions are very different

» in the first one, all points have the same positive probability
» in the second one,

» only a very small fraction of points ({0, 1} << {0,1}"
> has positive probability
» an overwhelming proportion of points have probability zero
Nevertheless, given 2 samples, one from each
» no polynomial algorithm can distinguish which sample is which

Note:
1. the number of points in both is huge: 2‘3, 2" where n = p(¥), for

some polynomial

> 2‘7, 2" > p(n), for any polynomial
» {Ln

2. the points in the second distribution
» show no structure

The flavor of security: DH

» The single most important building block in cryptography

» Constructing a secure channel from an insecure channel

A B
x<+<{1,...,n} g~

g}’

y+<{1,...,n}
Both can calculate k = (g¥)Y = g*¥) = g% = (g¥)*

Figure: Diffie-Hellman Key Agreement

Diffie-Hellman (DH)

> As presented, DH has one problem

» This is an unauthenticated DH
> Neither A nor B is assured "who is sitting on the other side"
» A man-in-the-middle is possible
> Exercise!
» A simple way of securing it, is by

» signing at least one of the shares (g*), (9”)
» Say, B does not only send (g*) to A

> she also sends its signature,
> so it must come from B

DH is secure against a passive attacker

If an attacker only sees a DH exchange
» (without playing Man-in-the-Middle)
» then he does not learn the key; more precisely:
> he cannot distinguish the key from any strange random number
If the attacker has to choose between

> the real key that the parties A and B have agreed upon
» and a random number of the same size

> he will have prob ~ of guessing correctly
This is formalized as a game (next slide)

The flavor of security: DDH as a Game

b Chall. Att.
EXP(b
x,y < {1,...,n} (®)
r<— G
ch=(9*,¢9",g¥) iftb=0
ch=(g*,¢",r) ifb=1 ch
A(EXP(b))

The adversary is able to win the game with prob. significantly > %
» iff he is able to distinguish the distributions
> DH-triples: 24 = {(g*, 9", 97) |x,y + {1,...,n}}
> Random triples: % = {{(9*, ¢, r) |x,y <, r < G}

DA

Hard problems: Decisional Diffie-Hellman Problem

Given any arbitrary PPT (pol, poly-time) algorithm A
» and G a group with generator g as above

Choose (Note: the choices are random =- independent of A)
» x+ {1...|G|}

» y+—{1...|G}

» r<— G
» b+ {0,1}

Construct the triple (called "challenge"):

ch= {<9X,gy,gxy> if b =

0
(95,9”,r)

if b=1

Hard problems: Decisional Diffie-Hellman Problem

» Let us say that "A wins" if A(ch) = b

» thus the algoritm A guessed correctly the bit b

> (Note that A can be deterministic or not)
A has always a probability 1 of winning
» (Do not look at ch, simply trow a coin)
» But A could have a bit of advantage ¢

P[A wins |x, y, r, b chosen as above] = — + ¢
Note that € may depend on the algorithm A

> but also on ¢ — the "size of the input" of the algorithm
» = the size (length) of the challenge

"Winning" vs. "distinguishing"

Instead of considering if an algorithm can win
» it results easier to ask if an algorithm can distinguish the two
casesb=0,b=1
The definition is (up to a multiplicative constant on €) equivalent:
» if an algorithm can win, it distinguishes
» if an algorithm distinguishes, either it or its negation wins

Chall. Att.
—
EXP(b)

A(EXP(b))

~

Adv(A, EXP(0), EXP(1)) = |P[A(EXP(1) = 1)] — P[A(EXP(0) = 1)]|

DA

Jorge Cuellar Cryplo for PETs —Part 1 20

The flavor of security: Hard Problems

1. DDH
2. Distinguishing a Pseudorandom from a random number
3. Factoring numbers which are the product of two large primes

4. Finding the logarithm of elements in a finite ("complicated") group

The flavor of security: large and small ns

» 6 correct: 1in 13,983,816 < 224

» With only one ticket, the probability is really low

» With tens of millions of tickets, the probability of winning is high
» ...from an attacker that can make

» tens of millions of tries per second to hack some system
> and he has lots of time to perform the attack

Hacking by brute force

» The number of seconds since the Big Bang is
» about 4.32x10"7 < 2%

» Thus, assume an attacker makes

» ten millions of tries per second 107

> over a time comparable to the age of the universe
» = he makes in total ~ 2% tries
» What we want is that still such attackers have a

» low probability of hacking the system, say 1 in 1 million ~ 22°
crack it

» Thus we want systems in which you need roughly =~ 2% tries to
219 is a "large number"

The flavor of security: EC over R

Figure: EC over R. The "product" of two points in the EC is defined
geometrically

DA
Jorge Cuslar Coyptofor PETs —Part 1

2

ws 1818

Elliptic Curves over a finite filed

123456789 10111213141516171219202122 x

Figure: EC over a finite filed

Jorge Cular

= 9DAC¢

Gryplo for PETs — Part 1

2

Digests (Fingerprints or Indexes)

is an efficient deterministic algorithm h: {0,1}* — {0,1}"
» maps data of arbitrary size, say a message or file, etc
> to data of fixed size

» an calculates a not too short "checksum"” or "fingerprint"

Digests (Fingerprints or Indexes)

if x and x” are messages (or files, or bit strings)
» chosen "totally independently”, the one from the other

» example: choose two files at random from a file disk
» example: take two sentences at random in a novel
» then digest(x) = digest(x’) = x = x’

» with a high probability

Note that "totally independently” is not well defined

Digests (Fingerprints or Indexes)

Can be used as an index
» If x and x’ have the same digest
» then "it is safe" to assume that x and x’ are the same
» to construct "index tables" (also called "hash tables"),
» where the index is the digest
> to accelerate table or database lookup or
> to detect duplicated records or files, etc

Digests (Fingerprints or Indexes)

» To find duplicates in a set of files:

» calculate the digests of all files

» sort the table

> but if the files are small, you do not need a digest
» create a table: {(index1, locationy), (indexz, location,), . . .}

> |f two indexes are the same, then the files must be identical
» And: this gives us a very efficient way

» of remember things we have seen

» and recognizing them again,

» This is useful because the digest is small,

» while the files or values we want to remember are big
> if not, there was no problem to start with

ws 1819

= DaAe
Jorge Cuslar

Gryplo for PETs — Part 1

2

Cryptographic Hashes

What we call digest is sometimes called hash

» but we reserve the word hash for Cryptographic Hash Functions
» which have further properties

[m]

=

DA
Jorge Guslar Coyptofor PETs —Part 1

20

Cryptographic Hashes

> preimage resistance

» second-preimage resistance
» collision resistance

» hiding (puzzle friendly)

» "uniform"

[m]

=

Jorge Cular

Gryplo for PETs — Part 1

DA

Kl

Preimage resistance as a game

» and a hash function: h: {0,1}* — {0,1}"

» randomly y € {0,1}"
» and presents it to the adversary

> Note that it may be easy to find a preimage
» for some particular values of y

» but "for almost all" y’s it should be difficult L

L
H
2
EH
ES
8

Second Preimage resistance as game

We can’t say: the challenger chooses
» some random bit string in, say {0, 1}*

» this is an enumerable set,
> there is no standard notion of "uniform distribution" in {0, 1}*
Thus the challenger chooses a random string
» in a finite subset of {0, 1}*
» but the random string should not be too small
Leta,be Nwithn<a<b
» the challenger chooses at random some bit string in

> {0, 1} = {x € {0,1}* | a< |x| < b}

> = the set of bit strings of length > aand < b

Jorge Cular

DA
Crypt or P

s — Part

Second Preimage resistance as a game

» some random bit string
> x € {0, 1}n2n

» and presents to the adversary

> X, h(x) (or only x, th adversary can calculate the hash)

any second string x' # x with h(x’) = h(x)

DA

2

Second-Preimage Resistance
For some choices of h(x)
> it may be easy to find a preimage
or for some choices of x

» it may be easy to find a second preimage of h(x)

> but does not guarantee preimage resistance

Cryptographic Hash Functions

» A hash function takes as input any string
» of any size

» It produces a fixed size output

» BitCoin for instance uses 256 bits
» The hash is efficiently computable:

> in a polynomial (normally: linear) amount of time (on the length of
the input), it calculates the output
» Thus, it is an efficient algorithm:

h:{0,1}* — {0,1}"

Properties of Cryptographic Hash Functions

» First property: Collision-resistance:

» nobody normal (read: polynomial algorithm) can find two different
values x and x’ with the same hash
> In other words:

» it is unfeasible to find x # x” , such that h(x) = h(x’)
» BUT: Many collisions do exist
» Infinite number (or a very large number) of possible inputs
» But only 2" possible outputs
» Just nobody "normal” can find collisions

> ...we will see what that means

Cryptographic Hash Functions: Collisions

Collisions can not be found

> by "regular people" using "regular computers"
> Note: this is the notion of "efficient attacker”
» Here this means: in a sequential (normal) computer
» you will need around 2"/2 steps to find a collision
>

if the hash is secure
A method that works, for sure, is:

» pick 27 + 1 distinct values, compute the hashes of them,
» check if there are any two outputs are equal

» Since we have more inputs than possible output values
» some pair of them must collide

Cryptographic Hash Functions: Collisions

» Birthday paradox: with 213 inputs

> there is already a 99.8% chance that there are collisions
» But this is a large number
» for all practical purposes

> We do not know — in practise — how to find a collision

» We only know — in principle — how to find a collision
» but this method takes too long to matter

> (In theory, theory and practise are the same, but not in practise)

Cryptography works because of "hard problems"

and everyone know public keys
» the algorithms for encryption, decryption, signing, etc
> are polynomial on n, the length of the keys

you may still, in principle, crack the system
» but those algorithms should not be better than "brute-force"
» which takes exponentially long on the size of the keys

» nthat are "small", but
» whose exponentials 2" are "large"

Are Cryptogr. Hash Functions Collision-free?

Because the domain is larger than the codomain
» For some hash functions
» Many people have tried hard to find collisions
> without success
» For some hash functions
» collisions were eventually found
> Example: MD5
> It was then deprecated and phased out of practical use

=] F = E E DA
ws 1819

Jorge Cuellar Cryplofor PETs—Part 1 41

Some "large" numbers

» 2140 = 102 The number of instructions calculated
» Assuming 103 computers

> more than 1000 computers per person
» each one calculating 10'2 instructions per second

> much more than what we have today

» since the beginning of the universe: 10" sec
> 2265 = 1080 The estimated

» number of atoms in the observable Universe
» 2389 _ 1020 g k.a. the "Shannon number":

ws 1819

» An estimated lower bound on the game-tree complexity of chess

= DaAe
Jorge Guelar

Gryplo for PETs — Part 1

a2

Algebra

» Euclid’s algorithm
» The notion of group
» Generator

> Z;; and Z;q

o F = = = 9DAC¢
ws 1819

Jorge Cuellar Cryplo for PETs —Part 1 43

» Agroup (G,0)isaset G
> with an associative operation o on G
» which has an identity (unit element) and inverses
» Thatis:
» 0:G X G— G, with:
> Yhi, ho, h3 € G, (hioh)ohs =hyo(hohs)
» 3.Vhe Gieoh=hoe=h
> Yhc G,3h 'suchthathoh™' = e
» We are interested only in commutative groups that is
> Vh1,h2 € G,hyohy = hy o hy

o F = E E DA
ws 1819

Jorge Cuellar Cryplo for PETs —Part 1 44,

Cyclic Groups

Starting with any element g in any group G

» consider the set of all powers of g € G
This is a subgroup of G:

» itis denoted (g) and called the subgroup generated by g
» Note that this group (g) is always commutative
» even if Gis not

DA
Jorge Guelar

Gryplo for PETs — Part 1

a5

Order of an element

If (g) is finite
» its size is called

> the order of g, and also

> the order of the subgroup {g)
Thus

> ord(g) = ord({g)) = [{g)| = min{i | ¢' = e}

DA

5

Cyclic Groups

A group G is cyclic if it has an element g s.th
> G=(9)
Any finite cyclic group of order n is of the form:
> G =

>

g ., ¢

P

{e, 9 ,g09,g0gog,....,.gogogogo...og(n—1times)}
~ N ——
={e, g,

°

form (Zn, +n) (next slide)

g }
Notice that any two cyclic groups of the same order are isomorphic
» In particular any cyclic groups is isomorphic to some group of the

A very "simple" group

group foreach n € N

Zn={0,1,2,3,...n— 1} with +, the sum modulo n as operation is a
» The size of the group is n

» This is a "simple group"

» a group where all interesting operations are easy to evaluate -
including the "discrete logarithm"
> but it is isomorphic to cyclic groups where

> the corresponding operations may be quite difficult
This may seem strange:

» Gy and G, are isomorphic groups

> operations in one group Gy are simple and

» the corresponding operations in G, are difficult

ws 1819

Gi = (Zp, +) is "simple"

But G1 ¥ Gy = (g),g" = 1 may be not simple Given g, the
isomorphism
» G; — Go is easy to calculate (using exponentiation)

» while the reverse isomorphism G, — G; may be difficult to
calculate

> requiring the computation of a discrete logarithm

[m] = = =

Jorge Cular

= 9DAC¢

Gryplo for PETs — Part 1

a9

Examples of Groups

Z, for some prime p
» is the set of elements
» {1,2,3,...p— 1} under multiplication
» The size of the groupis p — 1
75 ={1,2,3,4,5,6}

» 5x5=,25=,4

» 37" €Z;is5since 3x5=; 15=; 1
G = {1,2,4} is a subgroup of Z3

» Inverses can be derived using Euclid’s algorithm (later)
» But{1,2,4,6} is not:

> 2x6(mod 7) ¢ G
Elliptic Curve groups

Greatest Common Divisor (gcd); Euclid’s algorithm

> Let a, b € N, then gcd(a, b)

» The greatest common divisor of aand b is:

gcd(a,b) =max{d € N | (d | a)and (d | b)}
In words: it is the largest d that divides both a and b
» If a, b € Z, we can define:

> gcd(a, b) = gcd(|al, |b])

Greatest Common Divisor (gcd); Euclid’s algorithm

Note: There are 3 types of "|" in the previous slide:

, to denote the absolute value of a

» one used for set comprehension, as in{d € N | p(d)}

» to denote the set of all d with the property p(d)
» (d | a) to denote d divides a

> |a

Greatest Common Divisor (gcd); Euclid’s algorithm

» is the remainder (rest) of the division of b by a
If a,b € Nand a < b, then

» division gives two numbers g, r € NU {0}:
» b=qga+rwith0<r<a

» This r is the residue of b modulo a: r =res, b

Euclid’s algorithm

Since gcd(a, b) = ged(|b], |a|) and ged(a, b) = ged(b, a)
» We can assume that a,b € N and a < b. Then:

if b=0
ged(a, b) = a if resy
ged(resg b, a)

otherwise

DA

Euclid’s algorithm
integers k., /

For two integers a, b not both zero, gcd(a, b) = ak + bl for some

» Moreover, gcd(a, b) is the smallest positive integer of this form
(a, b)y is the set of all integer combinations of a and b
» The given algorithm to calculate gcd(b, a)

» can also be used to calculate the k,/ € Z

> in the so-called "Bezout’s identity": gcd(b,a) =k-a+/-b
> See next slide

a,be (ab),

Calculating the coefficients of Bezout’s identity

Euclid’s algorithm for calculating gcd(a, b)
» also provides k, | € Z such that gcd(b,a) = k-a+/-b
aj, b; into a new pair of numbers
> a1 =1reSy bj, b1 = &

The initial values ap = aand by = b are in (a, b),,
» For each step, if a;, b € (a, b),,

By induction,

> then both a1 =res, bi = (b — q - &) and b1 = a; are in (a, b),,

» all remainders in all steps of the algorithms are in for (a, b)z,
» and the coefficients can be iteratively calculated

Congruence, Z,

» Leta, b€ Z and n € N. We define
> a=, b (also written as a= b (mod n)) by
a=pb = n|(@a—b) < respa=respb
Zn = (Z/ En) = {071a

co,n—1}
» with addition and multiplication modulo n

DA

Inversion in Z,,

» We are interested in Z, with multiplication modulo n
> but (Z,, x) is not a group

> not all elements are invertible
> X € Zp is called invertible in Z,

> ifthereisay € Z, s.t.
» x-y=1inZ,

> Such y is unique
>

is called the inverse of x
> and is denoted by x ™

ws 1819

F = = = 9DAC¢
Jorge Cuslar CryptoforPETs—Part 1 56

Inversion in Z,,

» Theorem:

> X € Z, has an inverse if and only if gcd(x, n) = 1
» Proof sketch:

» ged(x,n)=1&dpa-x+b-n=1&Ja-x=,1
» ...in this case, x~' can be calculated using Euclid’s algorithm
» x~' =res,a, where ais a solution of
> a-x+b-n=1

» This algorithm has run time O(log?n)

» Z, the group of units modulo n

» or the group of invertible elements in Z,, is thus:
L}, ={x € Zn| gcd(x,n) =1}

= {x € Zn | x, nare prime relative }
={x€Z,| x" exists}

» Example: Zj, = {1,5,7,11}

Jorge Cular Gryplo for PETs — Part 1

= DaAe

60

Totient Function

> ¢(n) = |Zg]

> ¢ is called the totient function

> Note: ¢(n) is the number of prime relatives to n
> smaller than n

» Euler’s theorem says that

acZ: (= gedan=1) = a’=,1

> Proof follows from Lagange Thm (later)

Oz z

pq’

*

for p, g primes

> Z is the multiplicative group of
» invertible elements in Z,

> thatis, the prime relative to n: Z% = {x | gcd(x,n) = 1}
» In particular, for n = p - g (p, g primes):

Zp=1{1,2,.
Z;q = qu \ ({0,,0, 2p, 3p, .

p—1}=27p\ {0}

(@—1p} U{g,2q,3q,

(p—1q})

» Example: Zi5 =

> Z§_5={1,2,...,14}\{3,6,9,12}\{5,10}=
{1,274,7,8,11,13,14}
» |t follows that:

> if pis prime ¢(p) = p — 1

> if p, g are prime ¢(pg) := (p — 1)(q — 1)

Jorge Cular

Exponentiation

» To compute g2 efficiently, we use the following procedure:
» Determine n = log, a
» Compute g%

(g2 fori=1,2,4,...n

2n

g—-9F—-d" - —>g%—>9%2. .. o¢g
1. Let the binary representation of abe a,, ap—1,... a2, a1, ap

2. Now use the following to determine g2 :
gi=(@)" (@) .. (@)

» Example: 53 = (110101), =20 +22 4+ 24 4+ 25=14+4 + 16+ 32
» Then: g53 — g1+4+16+32 — g1 . g4 . g16 . g32

Exponentiation

In other words,
» To compute g2 efficiently

1 ifa=0
9% =14 (9%?)? ifaiseven
g-g% ' ifaisodd
It only takes < 2 - log, a multiplications (in the group, e.g, modular
multiplications)
» which is very fast

Ly, for p, g primes

» For instance, the non-invertible elements in Zs.5 are
» {0,3,6,9,12} U {0,5,10} and therefore
> Zis=755=1{1,2,4,7,8,11,13,14}
> $(15) = |Z35/=8=(5—1)-(3—1)

& =

DA
Jorge Cuslar Coptolor PETs —Part1 66

R : *
Inversion in qu,

for p, g primes

» Euler's Theorem implies

Veez:x?" =, 1

» Since ord(x), the order of x in Z7, divides

> ¢(n), the order of Z}, it follows that there is a

> k € Z such that ord(x) - k = ¢(n)
> And then x?™ = (x*)k = 1k = 4
» Example: 79019 = 742

of the

78 = 5764801 = 384320 * 15+ 1 =5 1
> RSA cryptosystem

» This theorem generalizes Fermat’s Little Theorem and is the basis

R : *
Inversion in qu,

for p, g primes

> If e d =4(pq 1then the functions
= e Lsy = Ling:

()% x — x®
(-)d cx — x9

» are inverse of each other
» In other words, for all x € Z:;q
(x9)7 = x, (x)° = x

Inversion in Z*

pq’

for p, g primes

; *
» Since e € qu

» then gcd(e, (p — 1)(g@ — 1)) = 1, and then

> e has a multiplicative inverse mod(p — 1)(g — 1)
» d = e~ can be found via Euclid’s Algorithm
» ed=1+C(p—1)(g—1)

> but only if the factors p, g are known
» Let y = x°, then

>y = (x0)9 = x1OP-TE—1) - x
» Therefore y — y9

> is the inverse of x — x°

Ly, for p, g primes

» Recall Zi5 = Z5 = {1,2,4,7,8,11,13,14} and
> ¢(15) = |Z3s| =8=(5—1)-(3—1)
» The multiplication table for this group is:

1 (2[4 7 [8 [11[13]14
2 |4 [8 [14]1 [7 [11]13
4 |8 [1 [13]2 [14]|7 |11
7 (14134 [11]2 [1 |8
8 |1 [2 [11]4 [13] 14
117 (142 [13]1 |8
13117 [1 [14]8 |4
1413118 [7 [4 |2

SNl VNN

wwwwwwwwwwwwwwwwwwwwwwwwwww

for p, g primes

» Notice that on the diagonal of the multiplication table

» we find the set of squares (or "quadratic residues")
> whichis (Zi5)% = {x* | x € Zs} = {1,4}
» Since 42 = 1 (in Z}s),

then x* = 1 for all x and

> therefore 775 is not cyclic

DA
Jorge Guelar

Gryplo for PETs — Part 1

7

L, is cyclic

» Remember that Z;; has p — 1 elements
» Another theorem of Euler says

> Zy is cyclic, that is: there is a g € Zj, such that
(9)={g":i€Z}={1,9.0%,¢",

Y Y/
» Example: 3 is a generator in Z3:

{1,8,3,3%,8%,3%) = {1,3,2,6,4,5} = Z;

> But not every element is a generator:

{1,2,22,2% 2% 2%} = {1,2,4}

L, is cyclic

» More generally,

Z%is cyclic < n=2,4,pF, 2pF

» where p¥ is a power of an odd prime number

» A generator of this cyclic group is called
> a primitive root modulo n

ws 1818

> or a primitive element of Z;,

- E = 9DAC¢
Joge Cusllr Cryptofor PETs—Part 1 73

Computationally Hard Problems

» The setting for cryptography is always the following:
» One entity, or a set of them,

> know one or several secrets related to each other
> and perhaps also to some "public information”

> known by all, honest parties as well as attackers
> If a party knows a secret,

> he is able to perform an operation efficiently
» that without knowing the secret

> would be too complex or unfeasible to perform
» The idea of "a certain operation is easy"

» if you know a certain secret
> but it is difficult if you don’t

> is usually expressed as a

ws 1819

> "Computationally Hard Problems" or as a
> "Cryptographic Assumption"

DA
Jorge Cuslar

Gryplo for PETs — Part 1

i

ws 1819

Discrete log problem (DLog)

v

v

v

v

v

The discrete logarithm is
> just the inverse operation of exponentiation
Example: consider the equation

> 3k =17 13 for k
» One solution is k = 4,
> but it is not the only solution,

> any number of the form k = 4 + 16nis one:

Since 3¢ =, 1
> (by Fermat’s little theorem) then
> 34+16n - 34 % 316n - 34 % (316)n = 34
And it is true that
3K =713 = k=5 4

Jorge Cular

E DA

Gryplo for PETs — Part 1

7

Discrete log problem (DLog)

» In general, let G be any group,and g,b € G
» Then any k € N that solves gk = b
> is a discrete logarithm (or simply, logarithm) of b
> tothe base g: k = log, b
» Depending on b and g
> it is possible that no discrete logarithm exists
> or that more than one discrete logarithm exists
» Let (g) be the finite cyclic subgroup of G
> generated by g

> Then log, b exists for all b € (g)

ws 1819

Discrete log problem (DLog)

» But no efficient algorithm

» for computing general discrete logarithms log,, g is known
» for an arbitrary group
» There exist groups for which

» computing discrete logarithms is apparently difficult
> In the case of

» large prime order subgroups of the group

>

>
>
>

Z, there is not only no known efficient algorithm known

for the worst case,
but the average-case complexity
can be shown to be about as hard as the worst case

Jorge Cular

Gryplo for PETs — Part 1

E DA

4

Integer factorization

» of roughly the same length is believed to be difficult

> A related problem is the RSA problem

Given n — a product of two large primes
» |f one could factor n as n = pq, then one can calculate

> o(n) = (p — 1)(g — 1) and therefore given n (= pq), and
> if e € Z;} one could find d € Z;, with

> e~dE¢,(,,)1

This is used in the RSA system (later):
» Exponentiation to the e-th power is the inverse of
> exponentiation to the d-th power

Quadratic Residuosity Assumption ("Hard Problem")

Let, as above n = p - g be a positive integer, product of 2 large primes

» A number ais called a "quadratic residue,” or QR mod n,
» if there exists x such that x> = amod n

» Otherwise, ais called a "quadratic nonresidue" or QNR mod n
It is computationally hard to distinguish
» numbers that are QRs modulo n from those that are not

» unless one knows the factorization of n

One-Way Function

» A one-way function is

> easy to compute on every input
> but hard to invert

> given the image of a random input
> (but perhaps not on all)
» "Easy" and "hard" are meant

» in the sense of computational complexity

> that is, "easy" means "polynomial time problem"
> while "difficult" or "unfeasible" means not "easy"

ws 1819

= DaAe
Jorge Guelar

Gryplo for PETs — Part 1

&

ws 1819

One-Way Function

» their existence would prove

» The existence of such one-way functions is only a conjecture

> P<NP

» solving the foremost problem of computer science

Jorge Cuellar Cryplo for PETs — Part 1

DA

81

One-Way Function

> is one-way

» A function f: {0,1}* — {0,1}*

» if and only if f can be
» computed by a polynomial time algorithm
» but any Probabilistic Polynomial Algorithm

> that attempts to compute 7, a pseudo-inverse for f

> succeeds with negligible probability

Trapdoor

» Trapdoor permutation (or trapdoor function)
» is a keyed collection & = {f|i € I}

> (We will call i the "forward key")
» In the following sense:

> there are two "indexes/keys"
> one is /i, the (forward) key

> required to compute the function
» another one is a "secret" s;, the backward key

> required to compute the inverse efficiently

ws 1819

= DaAe
Jorge Guelar

Gryplo for PETs — Part 1

83

Trapdoor

» Acollection F = {fi: X; — Yi|li € I}
» of one-to-one functions such that
> f; is efficiently computable
» For y € 9(f), given a secret s;
> s feasilbe to calculate a preimage x with f(x) = y
» Fory € 9(f)
> without information about the secret
> it is unfeasilbe to calculate a preimage

o = = = z 9ace
-

Jorge Cuellar Cryplofor PETs —Part 1 84

ws 1819

Trapdoor

» The key (= index) for the forward direction

> can be know to the adversary
> and f; may be known to him

> not as a black box but also "as code/specification"

and still this will not help him
to invert the function
» Thatis, for any /, the function f; is

> one-way to anybody

» whod does not know the invertion key or "trapdoor"

» Note: a slight generalization allows that for some i,

» f; is invertible, but his happens with a small probability

v

v

Jorge Cular

E DA

Gryplo for PETs — Part 1

8

The One Time Pad

» The One Time Pad is a secure cipher
» but only if the key (= "pad") is used only once
> G ()= K
» k<« K ={0,1}"
» M =€ ={0,1}"
» £,9:{0,1}" — {0,1}"
> &k, x) =Dk, x) =xDk

DA

OTP is perfectly secure

b Chall.
—

Att.

mo, My
k+ X

EXP(b)

e=kdmyifb=0

e=k®mifb=1

A(EXP(b))
The adversary wins always with prob. exactly = %

» there are exactly two keys consitent with his observations:
> kp=my@deand ki =m; e

» but both keys have the same probability

DA

RSA problem (weaker than factorization)

find d € Zj, with e - d =45 1

1. %(): Generates a public and a private key: (e = Pa, d = pa)
> choose integers e, d s.t. - d =4, 1
> e and d are the public and private keys
» Notice that you can do that if

> you first choose random primes p, g of = 1024 bits
> and let n = pq,

2. §(Pa,") : M — 6
> &(Ps,m) =8E(e,m) = mfin Zj,
3. D(pa,:) : 6 — M

> @(pA,C) =@(d, C) = Cdin Zn
> itinverts &(Pa..): DA
> 9(d, (e, m)) = (x) = x* = KO 2 (PO x = XiRT e o

"Textbook RSA", a simplified version of RSA

» Beware:
» There are many attacks against "Textbook RSA"
» Let n = pg be the product of two primes
» nis a public number, known to all parties, but
> ¢(n)=(p—1)(g—1)=pg— p— q+1isasecret number
> only known to the CA
» Note that, given n = pq, the product of two primes
» nitis very difficult to calculate

> pn)=(p—-1)Qq-—1)=pg—p—q+1
» if the factorization of nis not known

» For any user A, the CA chooses a "public key"
> pky = e € Zp,, thatis ged(e, ¢(n)) = 1
» and calculates the "private key" sks = d
» withd- e =g 1
» Encryption of m € Z, is defined by ¢ = &§(m) =, m°®
> Decryption of ¢ € Zj, is defined by m = % (c) =, c®

[m] =l =

Jorge Cuelar Gryplo for P

i

S
yel
Q

Ts-Patt 89

"Textbook RSA" Algorithms: Key generation

» The encryption key e is known to all
» whereas the decryption key d is
> the private key of the receiver

> known only to him

» pand g are fairly large in size
> say 512 or 1024 bits

» Basic operations needed:

A fast primality testing algorithm, to choose the primes

>

>
>
>

multiplication
gcd computation
modular inverse computation

Jorge Cular

Gryplo for PETs — Part 1

ws 1819

D-H Algorithm

» Since the communication uses a public channel
» X =g¥and Y = g’ are visible to all
» If one can efficiently compute

» x from g and g* or
» yfrom g and g¥

> one can also get the private key g
» Computing z from g and g* in Zg_
> is the discrete logarithm problem

Jorge Cular

E DA

Gryplo for PETs — Part 1

ot

D-H Algorithm

» Like for integer factoring

» the currently best algorithm

» for computing discrete logarithm

> has subexponential but superpolynomial time complexity
> Itis not known

» if breaking the Diffie-Hellman protocol

> is equivalent to computing discrete logarithm

ws 1819

= DaAe
Jorge Guelar

Gryplo for PETs — Part 1

%

From D-H to El Gamal

Instead of the first message in the D-H exchange

A—2 B
b
Ac*—B k=¢"=(@"
» Let us view g2 as the public key (of A) and

» assume that B already knows it

» B wants to encrypt a message m with that public key
» instead of sending g°
» What he sends is

&(g°, m) = (g°, (g°)° & m)

Hard Problem: Decisional Diffie-Hellman (DDH)

An adversary should not be able to compute the key g* given g*, g¥
» But one wants more:
» Indistinguishability of the shared key from a uniformly random one

Given a group G and a generator g

» Consider the following game:
» Choose randomly x, y, r and present two options to the
adversary:
> (g%,9”,9"Y) - the DH triple — or
> (g%,9".1)
> X,y not given
» DDH problem: given the 2 triples in random order, decide
» Which of the two options is a DH-triple
» and which has a random third coordinate

The adversary should not be able to distinguish them

» with a probability > 0.5 + negl/ oot oot rerspurt

Key-Agreement: Security against passive attacker

» The property we want is that the adversary

» can’t win the following game with a probability > 0.5 + negl:
» The two honest parties

» this can be generalized to any number of parties
» run the protocol
> using some security parameter

» n (= length of shared key to be agreed upon)

> resulting in a transcript trans and a (shared) key k

Key-Agreement: Security against passive attacker

» The challenger presents the adversary
» the transcript trans and

> k' =k, or
> K« {0,1}"

> with prob 0.5 for each case

» k' € K ={0,1}", chosen like this: either

» The adversary guesses which case the challenger chose

Jorge Cular

Gryplo for PETs — Part 1

DA

%

Public Key Encryption System

» PK Encryption Sys is a triple: (4,8,9)

» 1. %(): randomized alg. that outputs a key pair (P4, pa)
> 2. &(Pa, m): randomized alg. that takes m € M and outputs ¢ € C
> 3. 9(pa, c): deterministic alg. that takes a private key (p4) and a
cyphertext c € C
> and outputs a message m € Mor L
» With the following consistency condition:

> V(pa.paycdom @)V mem? (Pa, 6(Pa, m)) = m

Security of Public Key Encryption Sys

> (Y,8,9) is semantically secure
» under CCA (chosen ciphertext attack)

negligible probability

» iff A, the Adversary, can only win the following game with a
> Setup: (Pa, pa) < 4()

» CCA-Phase: A chooses any (polynomial) number of

» ciphertexts ¢; and receives %(c;)
» Challenge: A chooses messages mg, m;

» The challenger chooses my, <+ {my, m; } (not known to A)
> and sends ¢c; = §(Pa, my) to A

» Guess: A guesses if ¢; corresponds to mg or my
» A wins if he chooses correctly

Subgroups

» H C Gis a subgroup of G

> writtenas H < G
=

» His itself a group with respect to the operation of G

DA
Jorge Cuslar Coyptofor PETs —Part 1

%

Lagrange’s Theorem: H < G = |H| divides |G|

» Proof: Let G be a group

» H be a subgroup of G
» For each x € G consider

xH :={xoh|he H}

Claim 1: the sets xH are all of the size

For any x, |xH| = |H|:

» he H— xohe xH

is a bijection
> itis 1-1
> X0h1 =X0h2:>h1 =h2

> cancelling x, i.e multyplying to the left with x
» and onto

—i
> because xH = {xh | h € H}

Claim 2: the sets xH form a partition of G

X € xH (since e € H), it remains to show

If xH N yH # @ then
» there are hy, ho € H such that

> X0h1=y0h2

» and thus for any h € H it follows

> xoh=yohoh ' oh& yH
Thus xH C yH and

> by symmetry xH = yH

Exercise on Lagrange’s Theorem

» Let G be a group
> H be a subgroup of G
» x € Gand xH := {x- h| h € H} as before
» Forevery x,y € Glet
> X~y xH=yH
> x~y&sx'yeH

> ~ is an equivalence relation and the equivalence classes are
precisely the sets xH

» Exercice: In the particular case of G = (Z, +) and H = n’Z the
subgroup of multiples of n
» calculate ~ and G/ ~

Fermat’s Theorem, Euler’s Theorem

» |{g)| = order(g) := min;{g’' = 1}
g € Gis called a generator of G if

» (g) = G or equivalently,

» the order of g is |G|

Assume G is a finite group,
> <g> = {g, e Z} = {1797 g2’93’ cooy gorder(g)—1}

Fermat’s Theorem, Euler’s Theorem

The order of any g € G divides |G|

» This follows directly from Lagrange’s Theorem
» since the size of the subgroup (g)
> divides the size of the group

For every prime pand g € N,

> g°~" =1 (mod p)

» This follows directly from Euler’'s Theorem
» Exercise: Fill in the details!!

Application: generating random primes

» Suppose we want to generate a large random prime p of length
1024 bits (i.e. p ~ 21024

» Choose a random integer p € [219%4 21025 _ 1]
» Testif 2P~ =1inZ,

> |f yes, done

> If not, try another p

» This is a simple algorithm, but not the best

Pr{p passes the test but is not prime] < 2~

Choosing a Group

» For some cryptographic applications
> we need prime-order groups
> Because some problems, like dlog, are easier
> if the order of the group has small prime factors
» To find a prime-order subgroup of some Z}, where p prime:
» First find primes p, g and a number t s.th. p = fq + 1
» Take the subgroup of " powers, i.e.,
» G=(Z) = {x'|xez}
» This is a group because x! - y! = (x - y)!
> lthasorder (p—1)/t=q
» Since q is prime, the group is cyclic
> In particular, p = 2q + 1
> pis called a "safe prime" and
> (Z;)2 is the group of quadratic residues

Determining a generator: Primitive root modulo n

» Definition ordz: (a) is called the multiplicative order of
» amodulo n

g is a primitive root modulo n

< ordzz:(g) = ¢(n)
& ordz:(g) = |Zy]
& ordz: (g) = min{k | g =1}

> has to be the smallest power of a which is congruent to 1 modulo
n

DA

Example:

» Consider the multiplicative group of Z, = {1,2,.
multiplication

» Say for p =11, we have G = {1,2,...,10}, and not all elements

are generators, e.g. 11 is not
» But 2 is a generator of Z;4:
» 21=222-423-82-16=5,25=10=—1,
» 26--2-92"=--4-728--8=3,2°=6,2"=12

=1

..,p— 1} under

Algorithm: Finding a Generator for Z

» If we choose p = 2q + 1, where g is also prime (p is called a "safe
prime") then g # &1 is a generator of Z; iff

> glo=1/2 =, —1

» This is easy to see: the order of g € Z;, must divide the order of
75, which is (p — 1) = 2 - g, but if g°~"/2 = g9 =, —1 and

» g° #, 1 (because g # +1), then the order of g must be (p — 1)

» There are ¢(¢p(n)) = ¢(29) = g — 1 many primitive elements,
picking a few random numbers and testing them will give a
generator

uuuuuuuuuuuuuuuuuuuuuuuuuuuuu

Algorithm: Finding a Generator for Z

More generally,

» given a prime p, along with the prime factorization
> p—1=ILpf

The following non-deterministic algorithm outputs a generator for Z
» fori < 1tordo
> loop

> choose o + Z,
> until oP= /P /1

ki
> aP/p;

> output y < I1]_ i

Jorge Cuellar Cryplo for PET — Part 1

DA
i

Bl

	N
	Flavor
	Hash
	Small+Large
	Alg
	Hard
	One-Way
	OTP, PRG
	RSA
	KAgr
	Lagrange,Euler,Fermat
	Adv

