
N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Crypto for PETs – Part 1

Jorge Cuellar

WS 18-19

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 1

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Notation

Key space K = {0, 1}n where n is "small"
Shared Key k
Public Key of A pkA PA

Private Key of A skA pA

Message space M = {0, 1}∗
Cipher space C
Key generator G : ()→ K
Encryption function E : {K ×M} → C
Decryption function D : {K × C} →M
Random choice x ← S
Run algorithm A x ← A(i)

Or: x A←− i

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 2

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Notation, Comments

Key space (1) K = {0, 1}n where n is "small"
Message space (2) M = {0, 1}∗
Key generator (3) G : ()→ K

1. The length of the key is considered small
I but the number of keys is large (brute-force attacks are impossible)

2. The length of a message can be larger than the length of the key
I usually it is larger, but – in some cases – it is not

3. G is a randomized algorithm that takes no input
I You may imagine () as a set that only contains one element

I whose name is irrelevant
I You may also write () = {•}

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 3

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Notation, Comments

Random choice (4) x ← S

Run algorithm A (5) x ← A(i) or x A←− i

1. x ← S means:
I let x be uniformly randomly choose out of the set S

2. x ← A(i) or x A←− i means:
I let x be the output of the possibly non-deterministic but

I efficient algorithm A running on input i

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 4

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Crypto Literature: Books

The following are links (you can click on them)

I Jonathan Katz and Yehuda Lindell. An Introduction to Modern
Cryptography

I Oded Goldreich. Foundations of Cryptography.

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 5

http://www.cs.umd.edu/%7Ejkatz/imc.html
http://www.cs.umd.edu/%7Ejkatz/imc.html
http://www.wisdom.weizmann.ac.il/%7Eoded/foc-book.html

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Crypto Literature: Lecture notes

The following are links (you can click on them)

I Haitner-Applebaum
I Ran Canetti

I Foundation of Cryptography (The 2008 course) and
I On Chernoff and Chebyshev bounds.

I Salil Vadhan Introduction to Cryptography.

I Luca Trevisan Cryptography.

I Yehuda lindell Foundations of Cryptography.

I Ryan O’Donnell Probability and Computating

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 6

http://www.cs.tau.ac.il/%7Eiftachh/Courses/FOC/Spring14/index.html
http://www.cs.tau.ac.il/%7Ecanetti/f08.html
http://people.csail.mit.edu/ronitt/COURSE/S07/lec25.pdf
http://people.seas.harvard.edu/%7Esalil/cs120/
http://www.cs.berkeley.edu/%7Edaw/cs276/
http://u.cs.biu.ac.il/%7Elindell/89-856/main-89-856.html
https://www.cs.cmu.edu/%7Eodonnell/papers/probability-and-computing-lecture-notes.pdf

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

PETS Literature

See the web pages of following people:

I George Danezis, Univ College London

I Mark D. Ryan, Birmingham

I Claudia Diaz, KU Leuven

I Seda Gurses, Princeton

I Frank Kargl, Ulm

I Alessandro Acquisti, CMU

I Carmela Troncoso, EPFL

I Frank Piessens, KU Leuven

I Nicola Zannone, Eindhoven

I Simone Fischer Huebner, Karlstad

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 7

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

PETS Literature

See the pages of following Seminars/Workshops

I IEEE Security & Privacy

I Annual Privacy Forum

I IEEE International Conference on Trust, Security and Privacy in
Computing and Communications (TrustCom)

I ACM Conference on Data and Application Security and Privacy

I Annual ACM workshop on Privacy in the Electronic Society

I CPDP (Computers, Privacy and Data Protection)

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 8

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

PETS Literature

See the following Projects

I PRIPARE (EU)

I Harvard University Privacy Tools Project
(https://privacytools.seas.harvard.edu)

I https://privacyflag.eu/
I https://abc4trust.eu/
I PRIME Project FP6-IST. Privacy and Identity Management for

Europe

I PrimeLife - Privacy and Identity Management in Europe for Life
(primelife.ercim.eu)

I The Free Haven Project (https://freehaven.net/)

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 9

https://privacytools.seas.harvard.edu
https://privacyflag.eu/
https://abc4trust.eu/
https://freehaven.net/

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

The flavor of security: PRG

To encrypt m with a one-time-pad e := x ⊕m

A random string x of length |m|, the size of m, is required

I |x | = |m| could be relatively large, say n := |x | = 106 bits

This has two problems:

1. The key x is very long: how to distibute securely the key?
2. Finding random numbers may be difficult

I obtaining ` = 100 random bits is much easier than n = 106 bits

Pseudo-Random Generators (PRG)

. . . are deterministic algorithms that

I given ` random bits, say ` = 100
I construct n = 106 � ` = 100 bits that

I "you can’t distinguish from random"WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 10

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

The flavor of security: PRG

Compare a truly random and a pseudo-random string

x ∈ {0, 1}n ← {0, 1}n

x ∈ {0, 1}n Ψ←− (k ← {0, 1}`)

We have two distributions over {0, 1}n:
1. choose uniformly a random string in {0, 1}n

I D1 = uniform({0, 1}n)

2. In the second case: first choose uniformly a "seed" (or "key") in
{0, 1}`

I then map that key to an element of {0, 1}n,
I via a deterministic efficient algorithm Ψ : {0, 1}` → {0, 1}n

I D2 = Ψ (uniform({0, 1}`))
Those two distributions are very different, yet:

I the PRG Ψ is secure⇔ D1 ≈ D2
I that is, the distributions are "computationally indistinguishable"

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 11

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

D1 = D{x | x ← {0, 1}n} ≈ D2 = D{Ψ (k) | k ← {0, 1}`}

x ← {0, 1}n

x Ψ←− k ← {0, 1}`

{0, 1}n

{0, 1}n

"From a helicopter", they are clearly distinguishable, but - samples
from them are not

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 12

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

D1 = D{x | x ← {0, 1}n} ≈ D2 = D{Ψ (k) | k ← {0, 1}`}

Note that the two distributions are very different

I in the first one, all points have the same positive probability
I in the second one,

I only a very small fraction of points ({0, 1}` ≪ {0, 1}n

I has positive probability
I an overwhelming proportion of points have probability zero

Nevertheless, given 2 samples, one from each

I no polynomial algorithm can distinguish which sample is which

Note:
1. the number of points in both is huge: 2`, 2n, where n = p(`), for

some polynomial
I 2`, 2n ≥ p(n), for any polynomial
I `� n

2. the points in the second distribution
I show no structure

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 13

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

The flavor of security: DH

I The single most important building block in cryptography
I Constructing a secure channel from an insecure channel

A B

gx

gy

x ← {1, . . . , n}

y ← {1, . . . , n}

Both can calculate k = (gx)y = g(x·y) = g(y ·x) = (gy)x

Figure: Diffie-Hellman Key Agreement

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 14

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Diffie-Hellman (DH)

I As presented, DH has one problem
I This is an unauthenticated DH
I Neither A nor B is assured "who is sitting on the other side"

I A man-in-the-middle is possible

I Exercise!
I A simple way of securing it, is by

I signing at least one of the shares (gx), (gy)
I Say, B does not only send (gx) to A

I she also sends its signature,
I so it must come from B

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 15

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

DH is secure against a passive attacker

If an attacker only sees a DH exchange

I (without playing Man-in-the-Middle)
I then he does not learn the key; more precisely:

I he cannot distinguish the key from any strange random number

If the attacker has to choose between
I the real key that the parties A and B have agreed upon

I and a random number of the same size
I he will have prob ≈ 1

2 of guessing correctly

This is formalized as a game (next slide)

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 16

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

The flavor of security: DDH as a Game

Consider the game between a "challenger" and an "adversary"
(or "attacker")

Chall. Att.b

x , y ← {1, . . . , n}
r ← G

ch = 〈gx , gy , gxy〉 if b = 0
ch = 〈gx , gy , r〉 if b = 1 ch

A(EXP(b))

EXP(b)

The adversary is able to win the game with prob. significantly > 1
2

I iff he is able to distinguish the distributions
I DH-triples: D1 = {〈gx , gy , gxy〉 |x , y ← {1, . . . , n}}
I Random triples: D2 = {〈gx , gy , r〉 |x , y ←, r ← G}

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 17

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Hard problems: Decisional Diffie-Hellman Problem

What does it mean that DDH is hard?

Given any arbitrary PPT (pol, poly-time) algorithm A

I and G a group with generator g as above

Choose (Note: the choices are random⇒ independent of A)

I x ← {1 . . . |G|}
I y ← {1 . . . |G|}
I r ← G

I b ← {0, 1}
Construct the triple (called "challenge"):

ch =

{
〈gx , gy , gxy〉 if b = 0

〈gx , gy , r〉 if b = 1

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 18

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Hard problems: Decisional Diffie-Hellman Problem

What does it mean that DDH is hard? (Cont)

I Let us say that "A wins" if A(ch) = b
I thus the algoritm A guessed correctly the bit b

I (Note that A can be deterministic or not)

A has always a probability 1
2 of winning

I (Do not look at ch, simply trow a coin)

I But A could have a bit of advantage ε

P[A wins |x , y , r , b chosen as above] =
1
2

+ ε

Note that ε may depend on the algorithm A
I but also on ` – the "size of the input" of the algorithm

I = the size (length) of the challenge

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 19

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

"Winning" vs. "distinguishing"

Instead of considering if an algorithm can win
I it results easier to ask if an algorithm can distinguish the two

cases b = 0, b = 1
The definition is (up to a multiplicative constant on ε) equivalent:

I if an algorithm can win, it distinguishes
I if an algorithm distinguishes, either it or its negation wins

Adv (A,EXP(0),EXP(1))

Chall. Att.b

A(EXP(b))

EXP(b)

Adv (A,EXP(0),EXP(1)) = |P[A(EXP(1) = 1)]− P[A(EXP(0) = 1)]|
WS 18-19

Jorge Cuellar Crypto for PETs – Part 1 20

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

The flavor of security: Hard Problems

The following problems are hard

1. DDH

2. Distinguishing a Pseudorandom from a random number

3. Factoring numbers which are the product of two large primes

4. Finding the logarithm of elements in a finite ("complicated") group

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 21

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

The flavor of security: large and small ns

The chance of winning the "6 in 49" Jackpot is

I 6 correct: 1 in 13, 983, 816 < 224

I With only one ticket, the probability is really low

Winning the lottery by brute force

I With tens of millions of tickets, the probability of winning is high

What we want is to be secure against brute force

I . . . from an attacker that can make
I tens of millions of tries per second to hack some system
I and he has lots of time to perform the attack

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 22

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Hacking by brute force

I The number of seconds since the Big Bang is
I about 4.32×1017 < 259

I Thus, assume an attacker makes
I ten millions of tries per second 107

I over a time comparable to the age of the universe
I ⇒ he makes in total ≈ 280 tries

I What we want is that still such attackers have a
I low probability of hacking the system, say 1 in 1 million ≈ 220

I Thus we want systems in which you need roughly ≈ 2100 tries to
crack it

2100 is a "large number"

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 23

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Info The flavor of security: EC over R

Figure: EC over R. The "product" of two points in the EC is defined
geometrically

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 24

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Info Elliptic Curves over a finite filed

Figure: EC over a finite filed

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 25

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Digests (Fingerprints or Indexes)

A digest (or a fingerprint) of a message (or file or bit sequence)

is an efficient deterministic algorithm h : {0, 1}∗ → {0, 1}n

I maps data of arbitrary size, say a message or file, etc
I to data of fixed size

I an calculates a not too short "checksum" or "fingerprint"

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 26

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Digests (Fingerprints or Indexes)

The property that "defines" digests is:

if x and x’ are messages (or files, or bit strings)
I chosen "totally independently", the one from the other

I example: choose two files at random from a file disk
I example: take two sentences at random in a novel

I then digest(x) = digest(x ′)⇒ x = x ′

I with a high probability

Note that "totally independently" is not well defined

But it is ok if you can construct messages with the same digest

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 27

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Digests (Fingerprints or Indexes)

Can be used as an index

I If x and x’ have the same digest

I then "it is safe" to assume that x and x’ are the same

Digests are used

I to construct "index tables" (also called "hash tables"),
I where the index is the digest

I to accelerate table or database lookup or
I to detect duplicated records or files, etc

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 28

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Digests (Fingerprints or Indexes)

I To find duplicates in a set of files:
I calculate the digests of all files

I but if the files are small, you do not need a digest
I create a table: {(index1, location1), (index2, location2), . . .}
I sort the table

I If two indexes are the same, then the files must be identical

I And: this gives us a very efficient way
I of remember things we have seen
I and recognizing them again,

I This is useful because the digest is small,
I while the files or values we want to remember are big

I if not, there was no problem to start with

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 29

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Cryptographic Hashes

Digests vs Hashes

What we call digest is sometimes called hash
I but we reserve the word hash for Cryptographic Hash Functions

I which have further properties

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 30

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Cryptographic Hashes

Properties of Hashes

I preimage resistance

I second-preimage resistance

I collision resistance

I hiding (puzzle friendly)

I "uniform"

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 31

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Preimage resistance as a game

Consider a challenger and an adversary, as before

I and a hash function: h : {0, 1}∗ → {0, 1}n

The challenger chooses

I randomly y ∈ {0, 1}n

I and presents it to the adversary

The adversary tries to find any string x with h(x) = y

The probability of finding x should be negligible

I Note that it may be easy to find a preimage
I for some particular values of y

I but "for almost all" y ’s it should be difficultWS 18-19
Jorge Cuellar Crypto for PETs – Part 1 32

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Second Preimage resistance as game

A technical problem

We can’t say: the challenger chooses

I some random bit string in, say {0, 1}∗
I this is an enumerable set,

I there is no standard notion of "uniform distribution" in {0, 1}∗

Thus the challenger chooses a random string

I in a finite subset of {0, 1}∗

I but the random string should not be too small

Let a, b ∈ N with n ≤ a ≤ b
I the challenger chooses at random some bit string in

I {0, 1}[a,b] := {x ∈ {0, 1}∗ | a ≤ |x | ≤ b}
I = the set of bit strings of length ≥ a and ≤ b

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 33

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Second Preimage resistance as a game

The challenger chooses

I some random bit string
I x ∈ {0, 1}[n,2n]

I and presents to the adversary
I x , h(x) (or only x , th adversary can calculate the hash)

The adversary tries to find

any second string x ′ 6= x with h(x ′) = h(x)

The probability of finding x ′ should be negligible

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 34

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Second-Preimage Resistance

"Almost all"

For some choices of h(x)

I it may be easy to find a preimage

or for some choices of x

I it may be easy to find a second preimage of h(x)

Collision resistance implies second-preimage resistance

I but does not guarantee preimage resistance

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 35

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Cryptographic Hash Functions

I A hash function takes as input any string
I of any size

I It produces a fixed size output
I BitCoin for instance uses 256 bits

I The hash is efficiently computable:
I in a polynomial (normally: linear) amount of time (on the length of

the input), it calculates the output

I Thus, it is an efficient algorithm:

h : {0, 1}∗ → {0, 1}n

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 36

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Properties of Cryptographic Hash Functions

I First property: Collision-resistance:
I nobody normal (read: polynomial algorithm) can find two different

values x and x’ with the same hash
I In other words:

I it is unfeasible to find x 6= x ′ , such that h(x) = h(x ′)
I BUT: Many collisions do exist

I Infinite number (or a very large number) of possible inputs
I But only 2n possible outputs

I Just nobody "normal" can find collisions
I . . . we will see what that means

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 37

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Cryptographic Hash Functions: Collisions

Collisions can not be found
I by "regular people" using "regular computers"

I Note: this is the notion of "efficient attacker"
I Here this means: in a sequential (normal) computer
I you will need around 2n/2 steps to find a collision

I if the hash is secure

A method that works, for sure, is:
I pick 2n + 1 distinct values, compute the hashes of them,

I check if there are any two outputs are equal
I Since we have more inputs than possible output values

I some pair of them must collide

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 38

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Cryptographic Hash Functions: Collisions

I Birthday paradox: with 2130 inputs
I there is already a 99.8% chance that there are collisions

I But this is a large number
I for all practical purposes

I We do not know – in practise – how to find a collision

I We only know – in principle – how to find a collision
I but this method takes too long to matter

I (In theory, theory and practise are the same, but not in practise)

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 39

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Cryptography works because of "hard problems"

If you know the secret and private keys

and everyone know public keys
I the algorithms for encryption, decryption, signing, etc

I are polynomial on n, the length of the keys

If you do not know them

you may still, in principle, crack the system
I but those algorithms should not be better than "brute-force"

I which takes exponentially long on the size of the keys

Thus, we are interested in numbers

I n that are "small", but

I whose exponentials 2n are "large"

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 40

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Are Cryptogr. Hash Functions Collision-free?

There is no collision free hash function

Because the domain is larger than the codomain
I For some hash functions

I Many people have tried hard to find collisions
I without success

I For some hash functions
I collisions were eventually found

I Example: MD5
I It was then deprecated and phased out of practical use

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 41

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Some "large" numbers

I 2140 = 1042 The number of instructions calculated
I Assuming 1013 computers

I more than 1000 computers per person
I each one calculating 1012 instructions per second

I much more than what we have today
I since the beginning of the universe: 1017 sec

I 2265 = 1080 The estimated
I number of atoms in the observable Universe

I 2389 = 10120 a.k.a. the "Shannon number":
I An estimated lower bound on the game-tree complexity of chess

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 42

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Algebra

I Euclid’s algorithm

I The notion of group

I Generator

I Z∗p and Z∗pq

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 43

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Groups

I A group (G, ◦) is a set G
I with an associative operation ◦ on G
I which has an identity (unit element) and inverses

I That is:
I ◦ : G × G→ G, with:

I ∀h1, h2, h3 ∈ G, (h1 ◦ h2) ◦ h3 = h1 ◦ (h2 ◦ h3)
I ∃e∀h ∈ G, e ◦ h = h ◦ e = h
I ∀h ∈ G,∃h−1 such that h ◦ h−1 = e

I We are interested only in commutative groups that is
I ∀h1, h2 ∈ G, h1 ◦ h2 = h2 ◦ h1

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 44

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Info Cyclic Groups

Starting with any element g in any group G

I consider the set of all powers of g ∈ G

This is a subgroup of G:

I it is denoted 〈g〉 and called the subgroup generated by g
I Note that this group 〈g〉 is always commutative

I even if G is not

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 45

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Info Order of an element

If 〈g〉 is finite
I its size is called

I the order of g, and also
I the order of the subgroup 〈g〉

Thus

I ord(g) = ord(〈g〉) = |〈g〉| = min{i | g i = e}

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 46

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Info Cyclic Groups

A group G is cyclic if it has an element g s.th

I G = 〈g〉
Any finite cyclic group of order n is of the form:

I G =
{e, g︸︷︷︸, g ◦ g︸ ︷︷ ︸, g ◦ g ◦ g︸ ︷︷ ︸, . . . , g ◦ g ◦ g ◦ g ◦ . . . ◦ g (n − 1 times)}︸ ︷︷ ︸

I

= {e, g, g2 , g3 , . . . , gn−1 }
Notice that any two cyclic groups of the same order are isomorphic

I In particular any cyclic groups is isomorphic to some group of the
form (Zn, +n) (next slide)

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 47

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Info A very "simple" group

Zn = {0, 1, 2, 3, . . . n − 1} with +n the sum modulo n as operation is a
group for each n ∈ N

I The size of the group is n
I This is a "simple group"

I a group where all interesting operations are easy to evaluate -
including the "discrete logarithm"

I but it is isomorphic to cyclic groups where
I the corresponding operations may be quite difficult

This may seem strange:
I G1 and G2 are isomorphic groups

I operations in one group G1 are simple and
I the corresponding operations in G2 are difficult

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 48

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Info G1 = 〈Zn, +〉 is "simple"

But G1
∼= G2 = 〈g〉 , gn = 1 may be not simple Given g, the

isomorphism
I G1 → G2 is easy to calculate (using exponentiation)

I while the reverse isomorphism G2 → G1 may be difficult to
calculate

I requiring the computation of a discrete logarithm

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 49

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Info Examples of Groups

Z∗p for some prime p
I is the set of elements

I {1, 2, 3, . . . p − 1} under multiplication

I The size of the group is p − 1

Z∗7 = {1, 2, 3, 4, 5, 6}
I 5 ∗ 5 ≡7 25 ≡7 4
I Inverses can be derived using Euclid’s algorithm (later)

I 3−1 ∈ Z7 is 5 since 3 ∗ 5 ≡7 15 ≡7 1

G = {1, 2, 4} is a subgroup of Z∗7
I But {1, 2, 4, 6} is not:

I 2 ∗ 6(mod 7) /∈ G

Elliptic Curve groups

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 50

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Greatest Common Divisor (gcd); Euclid’s algorithm

I Let a, b ∈ N, then gcd(a, b)
I The greatest common divisor of a and b is:

gcd(a, b) = max{d ∈ N | (d | a) and (d | b)}

In words: it is the largest d that divides both a and b
I If a, b ∈ Z, we can define:

I gcd(a, b) = gcd(|a|, |b|)

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 51

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Greatest Common Divisor (gcd); Euclid’s algorithm

Note: There are 3 types of "|" in the previous slide:
I one used for set comprehension, as in{d ∈ N | p(d)}

I to denote the set of all d with the property p(d)

I (d | a) to denote d divides a

I |a|, to denote the absolute value of a

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 52

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Greatest Common Divisor (gcd); Euclid’s algorithm

The residue of b modulo a, resa b

I is the remainder (rest) of the division of b by a

If a, b ∈ N and a ≤ b, then
I division gives two numbers q, r ∈ N ∪ {0}:

I b = qa + r with 0 ≤ r < a
I This r is the residue of b modulo a: r = resa b

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 53

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Euclid’s algorithm

Since gcd(a, b) = gcd(|b|, |a|) and gcd(a, b) = gcd(b, a)

I We can assume that a, b ∈ N and a ≤ b. Then:

gcd(a, b) =

{
a if resa b = 0

gcd(resa b, a) otherwise

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 54

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Euclid’s algorithm

For two integers a, b not both zero, gcd(a, b) = ak + bl for some
integers k , l

I Moreover, gcd(a, b) is the smallest positive integer of this form

Let 〈a, b〉Z := {k · a + l · b | k , l ∈ Z}
〈a, b〉Z is the set of all integer combinations of a and b

I The given algorithm to calculate gcd(b, a)
I can also be used to calculate the k , l ∈ Z

I in the so-called "Bezout’s identity": gcd(b, a) = k · a + l · b
I See next slide

Note

a, b ∈ 〈a, b〉Z

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 55

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Calculating the coefficients of Bezout’s identity

Thm

Euclid’s algorithm for calculating gcd(a, b)

I also provides k , l ∈ Z such that gcd(b, a) = k · a + l · b

Each step of Euclids Algorithm transforms a pair of numbers

ai , bi into a new pair of numbers

I ai+1 = resai bi , bi+1 = ai

The initial values a0 = a and b0 = b are in 〈a, b〉Z
I For each step, if ai , bi ∈ 〈a, b〉Z

I then both ai+1 = resai bi = (bi − q · ai) and bi+1 = ai are in 〈a, b〉Z
By induction,

I all remainders in all steps of the algorithms are in for 〈a, b〉Z
I and the coefficients can be iteratively calculated

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 56

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Congruence, Zn

I Let a, b ∈ Z and n ∈ N. We define

I a ≡n b (also written as a = b (mod n)) by

a ≡n b :⇔ n | (a− b) ⇔ resn a = resn b

Zn := (Z / ≡n) = {0, 1, . . . , n − 1}

I with addition and multiplication modulo n

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 57

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Inversion in Zn

I We are interested in Zn with multiplication modulo n
I but (Zn,×) is not a group

I not all elements are invertible

I x ∈ Zn is called invertible in Zn
I if there is a y ∈ Zn s.t.
I x · y = 1 in Zn

I Such y is unique
I is called the inverse of x
I and is denoted by x−1

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 58

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Inversion in Zn

I Theorem:
I x ∈ Zn has an inverse if and only if gcd(x , n) = 1

I Proof sketch:
I gcd(x , n) = 1⇔ ∃a,ba · x + b · n = 1⇔ ∃aa · x ≡n 1
I . . . in this case, x−1 can be calculated using Euclid’s algorithm:
I x−1 = resn a, where a is a solution of

I a · x + b · n = 1
I This algorithm has run time O(log2n)

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 59

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Z∗n

I Z∗n, the group of units modulo n
I or the group of invertible elements in Zn is thus:

Z∗n := {x ∈ Zn | gcd(x , n) = 1}
= {x ∈ Zn | x , n are prime relative}
= {x ∈ Zn | x−1 exists}

I Example: Z∗12 = {1, 5, 7, 11}

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 60

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Totient Function

I φ(n) := |Z∗n|
I φ is called the totient function
I Note: φ(n) is the number of prime relatives to n

I smaller than n

I Euler’s theorem says that

a ∈ Z∗n (⇔ gcd(a, n) = 1) ⇒ aφ(n) ≡n 1

I
Info

Proof follows from Lagange Thm (later)

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 61

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Z∗p,Z∗pq, for p, q primes

I Z∗n is the multiplicative group of
I invertible elements in Zn
I that is, the prime relative to n: Z∗n = {x | gcd(x , n) = 1}

I In particular, for n = p · q (p, q primes):

Z∗p = {1, 2, . . . , p − 1} = Zp \ {0}

Z∗pq = Zpq \ ({0, p, 2p, 3p, . . . (q − 1)p} ∪ {q, 2q, 3q, . . . (p − 1)q})

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 62

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Z∗n

I Example: Z∗15 =
I Z∗3·5 = {1, 2, . . . , 14} \ {3, 6, 9, 12} \ {5, 10} =
{1, 2, 4, 7, 8, 11, 13, 14}

I It follows that:
I if p is prime φ(p) := p − 1
I if p, q are prime φ(pq) := (p − 1)(q − 1)

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 63

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Exponentiation

I To compute ga efficiently, we use the following procedure:

I Determine n = log2 a

I Compute g2i = (g i)2 for i = 1, 2, 4, . . . n

g → g2 → g4 → g8 → g16 → g32 . . .→ g2n

1. Let the binary representation of a be an, an−1, . . . a2, a1, a0

2. Now use the following to determine ga :

ga = (g1)a1 · (g2)a2 · . . . · (g2n
)an

I Example: 53 = (110101)2 = 20 + 22 + 24 + 25 = 1 + 4 + 16 + 32

I Then: g53 = g1+4+16+32 = g1 · g4 · g16 · g32

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 64

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Exponentiation

In other words,

I To compute ga efficiently

ga =


1 if a = 0

(ga/2)2 if a is even

g · ga−1 if a is odd

It only takes ≤ 2 · log2 a multiplications (in the group, e.g, modular
multiplications)

I which is very fast

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 65

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Z∗pq, for p, q primes

I For instance, the non-invertible elements in Z3·5 are
I {0, 3, 6, 9, 12} ∪ {0, 5, 10} and therefore

I Z∗15 = Z∗3·5 = {1, 2, 4, 7, 8, 11, 13, 14}
I φ(15) = |Z∗3·5| = 8 = (5− 1) · (3− 1)

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 66

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Inversion in Z∗pq, for p, q primes

I Euler’s Theorem implies

∀x∈Z∗n xφ(n) ≡n 1

I Since ord(x), the order of x in Z∗n, divides
I φ(n), the order of Z∗n , it follows that there is a

I k ∈ Z such that ord(x) · k = φ(n)
I And then xφ(n) = (xord(x))k = 1k = 1

I Example: 7φ(15) = 74·2 = 78 = 5764801 = 384320 ∗ 15 + 1 ≡15 1
I This theorem generalizes Fermat’s Little Theorem and is the basis

of the
I RSA cryptosystem

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 67

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Inversion in Z∗pq, for p, q primes

For any e, the function (·)e : x 7→ xe is a permutation in Z∗pq

I If e · d ≡φ(pq) 1 then the functions

I (·)e, (·)d : Z∗pq → Z∗pq :

(·)e : x 7→ xe

(·)d : x 7→ xd

I are inverse of each other
I In other words, for all x ∈ Z∗pq

(xe)d = x , (xd)e = x

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 68

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Inversion in Z∗pq, for p, q primes

I Since e ∈ Z∗pq
I then gcd(e, (p − 1)(q − 1)) = 1, and then

I e has a multiplicative inverse mod(p − 1)(q − 1)
I d := e−1 can be found via Euclid’s Algorithm
I ed = 1 + C(p − 1)(q − 1)

I but only if the factors p, q are known

I Let y = xe, then
I yd = (xe)d = x1+C(p−1)(q−1) = x

I Therefore y 7→ yd

I is the inverse of x 7→ xe

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 69

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Z∗pq, for p, q primes

I Recall Z∗15 = Z∗3·5 = {1, 2, 4, 7, 8, 11, 13, 14} and
I φ(15) = |Z∗3·5| = 8 = (5− 1) · (3− 1)

I The multiplication table for this group is:

1 2 4 7 8 11 13 14
2 4 8 14 1 7 11 13
4 8 1 13 2 14 7 11
7 14 13 4 11 2 1 8
8 1 2 11 4 13 14 7
11 7 14 2 13 1 8 4
13 11 7 1 14 8 4 2
14 13 11 8 7 4 2 1

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 70

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Z∗pq, for p, q primes

I Notice that on the diagonal of the multiplication table
I we find the set of squares (or "quadratic residues")

I which is (Z∗15)2 = {x2 | x ∈ Z∗15} = {1, 4}
I Since 42 = 1 (in Z∗15),

I then x4 = 1 for all x and
I therefore Z∗15 is not cyclic

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 71

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Info Z∗p is cyclic

I Remember that Z∗p has p − 1 elements
I Another theorem of Euler says

I Z∗p is cyclic, that is: there is a g ∈ Z∗p , such that

〈g〉 := {g i : i ∈ Z} = {1, g, g2, g3, . . . , gp−2} = Z∗p

I Example: 3 is a generator in Z∗7:

{1, 3, 32, 33, 34, 35} = {1, 3, 2, 6, 4, 5} = Z∗7

I But not every element is a generator:

{1, 2, 22, 23, 24, 25} = {1, 2, 4}

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 72

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Info Z∗p is cyclic

I More generally,

Z∗n is cyclic ⇔ n = 2, 4, pk , 2pk

I where pk is a power of an odd prime number
I A generator of this cyclic group is called

I a primitive root modulo n
I or a primitive element of Z∗n

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 73

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Computationally Hard Problems

I The setting for cryptography is always the following:
I One entity, or a set of them,

I know one or several secrets related to each other
I and perhaps also to some "public information"
I known by all, honest parties as well as attackers

I If a party knows a secret,
I he is able to perform an operation efficiently

I that without knowing the secret
I would be too complex or unfeasible to perform

I The idea of "a certain operation is easy"
I if you know a certain secret

I but it is difficult if you don’t
I is usually expressed as a

I "Computationally Hard Problems" or as a
I "Cryptographic Assumption"

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 74

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Discrete log problem (DLog)

I The discrete logarithm is
I just the inverse operation of exponentiation

I Example: consider the equation
I 3k ≡17 13 for k
I One solution is k = 4,

I but it is not the only solution,
I any number of the form k = 4 + 16n is one:

I Since 316 ≡17 1
I (by Fermat’s little theorem) then

I 34+16n = 34 ∗ 316n = 34 ∗ (316)n ≡17 34

I And it is true that

I 3k ≡17 13⇔ k ≡16 4

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 75

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Discrete log problem (DLog)

I In general, let G be any group, and g, b ∈ G
I Then any k ∈ N that solves gk = b

I is a discrete logarithm (or simply, logarithm) of b
I to the base g: k = logg b

I Depending on b and g
I it is possible that no discrete logarithm exists

I or that more than one discrete logarithm exists

I Let 〈g〉 be the finite cyclic subgroup of G
I generated by g

I Then logg b exists for all b ∈ 〈g〉

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 76

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Discrete log problem (DLog)

I But no efficient algorithm
I for computing general discrete logarithms logb g is known

I for an arbitrary group

I There exist groups for which
I computing discrete logarithms is apparently difficult

I In the case of
I large prime order subgroups of the group

I Z∗p there is not only no known efficient algorithm known
I for the worst case,
I but the average-case complexity
I can be shown to be about as hard as the worst case

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 77

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Integer factorization

To factor the product of two large primes

I of roughly the same length is believed to be difficult

I A related problem is the RSA problem

RSA problem (weaker than factorization)

Given n – a product of two large primes
I If one could factor n as n = pq, then one can calculate

I φ(n) = (p − 1)(q − 1) and therefore given n (= pq), and
I if e ∈ Z∗n one could find d ∈ Z∗n with

I e · d ≡φ(n) 1

This is used in the RSA system (later):

I Exponentiation to the e-th power is the inverse of

I exponentiation to the d-th power

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 78

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Quadratic Residuosity Assumption ("Hard Problem")

Let, as above n = p · q be a positive integer, product of 2 large primes
I A number a is called a "quadratic residue," or QR mod n,

I if there exists x such that x2 = a mod n

I Otherwise, a is called a "quadratic nonresidue" or QNR mod n

QR assumption

It is computationally hard to distinguish
I numbers that are QRs modulo n from those that are not

I unless one knows the factorization of n

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 79

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

One-Way Function

I A one-way function is
I easy to compute on every input
I but hard to invert

I given the image of a random input
I (but perhaps not on all)

I "Easy" and "hard" are meant
I in the sense of computational complexity

I that is, "easy" means "polynomial time problem"
I while "difficult" or "unfeasible" means not "easy"

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 80

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

One-Way Function

I The existence of such one-way functions is only a conjecture
I their existence would prove

I P 6= NP
I solving the foremost problem of computer science

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 81

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

One-Way Function

I A function f : {0, 1}∗ → {0, 1}∗
I is one-way

I if and only if f can be
I computed by a polynomial time algorithm

I but any Probabilistic Polynomial Algorithm
I that attempts to compute f̂ , a pseudo-inverse for f

I succeeds with negligible probability

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 82

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Info Trapdoor

I Trapdoor permutation (or trapdoor function)
I is a keyed collection F = {fi |i ∈ I}

I (We will call i the "forward key")

I In the following sense:
I there are two "indexes/keys"
I one is i , the (forward) key

I required to compute the function
I another one is a "secret" si , the backward key

I required to compute the inverse efficiently

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 83

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Info Trapdoor

I A collection F = {fi : Xi → Yi |i ∈ I}
I of one-to-one functions such that
I fi is efficiently computable
I For y ∈ D(fi), given a secret si

I is feasilbe to calculate a preimage x with f (x) = y
I For y ∈ D(fi)

I without information about the secret
I it is unfeasilbe to calculate a preimage

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 84

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Info Trapdoor

I The key (= index) for the forward direction
I can be know to the adversary
I and fi may be known to him

I not as a black box but also "as code/specification"
I and still this will not help him
I to invert the function

I That is, for any i , the function fi is
I one-way to anybody

I whod does not know the invertion key or "trapdoor"

I Note: a slight generalization allows that for some i ,
I fi is invertible, but his happens with a small probability

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 85

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

The One Time Pad

I The One Time Pad is a secure cipher
I but only if the key (= "pad") is used only once

I G : ()→ K
I k ← K = {0, 1}n

I M = C = {0, 1}n

I E,D : {0, 1}n → {0, 1}n

I E(k , x) = D(k , x) := x ⊕ k

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 86

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

OTP is perfectly secure

Consider the usual game

Chall. Att.b

m0,m1

k ← K

e = k ⊕m0 if b = 0
e = k ⊕m1 if b = 1 e

A(EXP(b))

EXP(b)

The adversary wins always with prob. exactly = 1
2

I there are exactly two keys consitent with his observations:
I k0 = m0 ⊕ e and k1 = m1 ⊕ e
I but both keys have the same probability

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 87

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

RSA problem (weaker than factorization)

Given n – a product of two large primes – and e ∈ Z∗n
find d ∈ Z∗n with e · d ≡φ(n) 1

RSA Cryptosystem ("textbook version") is a triple:

1. G(): Generates a public and a private key: (e = PA, d = pA)
I choose integers e, d s.t. e · d ≡φ(n) 1

I e and d are the public and private keys
I Notice that you can do that if

I you first choose random primes p, q of ≈ 1024 bits
I and let n = pq,

2. E(PA, ·) : M → C
I E(PA,m) = E(e,m) = me in Zn

3. D(pA, ·) : C→M
I D(pA, c) = D(d , c) = cd in Zn
I it inverts E(PA,·):

I D(d , E(e,m)) = (xe)d = xed = xk·φ(n)+1 = (xφ(n))k · x = x in Zn
WS 18-19

Jorge Cuellar Crypto for PETs – Part 1 88

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

"Textbook RSA", a simplified version of RSA

I Beware:
I There are many attacks against "Textbook RSA"

I Let n = pq be the product of two primes
I n is a public number, known to all parties, but
I φ(n) = (p − 1)(q − 1) = pq − p − q + 1 is a secret number

I only known to the CA

I Note that, given n = pq, the product of two primes
I n it is very difficult to calculate

I φ(n) = (p − 1)(q − 1) = pq − p − q + 1
I if the factorization of n is not known

I For any user A, the CA chooses a "public key"
I pkA = e ∈ Z∗pq , that is gcd(e, φ(n)) = 1

I and calculates the "private key" skA = d
I with d · e ≡φ(n) 1

I Encryption of m ∈ Z∗pq is defined by c = E(m) ≡n me

I Decryption of c ∈ Z∗pq is defined by m = D(c) ≡n cd

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 89

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

"Textbook RSA" Algorithms: Key generation

I The encryption key e is known to all
I whereas the decryption key d is

I the private key of the receiver
I known only to him

I p and q are fairly large in size
I say 512 or 1024 bits

I Basic operations needed:
I A fast primality testing algorithm, to choose the primes
I multiplication
I gcd computation
I modular inverse computation

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 90

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

D-H Algorithm

I Since the communication uses a public channel
I X = gx and Y = gy are visible to all

I If one can efficiently compute
I x from g and gx or
I y from g and gy

I one can also get the private key gxy

I Computing z from g and gz in Z∗q−1
I is the discrete logarithm problem

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 91

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

D-H Algorithm

I Like for integer factoring
I the currently best algorithm
I for computing discrete logarithm

I has subexponential but superpolynomial time complexity

I It is not known
I if breaking the Diffie-Hellman protocol

I is equivalent to computing discrete logarithm

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 92

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

From D-H to El Gamal

Let us now transform D-H into an encryption system

Instead of the first message in the D-H exchange

A
ga

−−−−→ B

A
gb

←−−−− B k = gab = (ga)b = (gb)a

I Let us view ga as the public key (of A) and
I assume that B already knows it

I B wants to encrypt a message m with that public key
I instead of sending gb

I What he sends is

E(ga,m) := (gb, (ga)b ⊕m)

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 93

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Hard Problem: Decisional Diffie-Hellman (DDH)

An adversary should not be able to compute the key gxy given gx , gy

I But one wants more:
I Indistinguishability of the shared key from a uniformly random one

For DH, that means the following:

Given a group G and a generator g

I Consider the following game:
I Choose randomly x , y , r and present two options to the

adversary:
I (gx , gy , gxy) – the DH triple – or
I (gx , gy , r)

I x, y not given

I DDH problem: given the 2 triples in random order, decide
I Which of the two options is a DH-triple
I and which has a random third coordinate

The adversary should not be able to distinguish them

I with a probability > 0.5 + neglWS 18-19
Jorge Cuellar Crypto for PETs – Part 1 94

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Key-Agreement: Security against passive attacker

I The property we want is that the adversary
I can’t win the following game with a probability > 0.5 + negl :

I The two honest parties
I this can be generalized to any number of parties

I run the protocol
I using some security parameter
I n (= length of shared key to be agreed upon)

I resulting in a transcript trans and a (shared) key k

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 95

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Key-Agreement: Security against passive attacker

I The challenger presents the adversary
I the transcript trans and
I k ′ ∈ K = {0, 1}n, chosen like this: either

I k ′ = k , or
I k ′ ← {0, 1}n

I with prob 0.5 for each case
I The adversary guesses which case the challenger chose

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 96

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Public Key Encryption System

I PK Encryption Sys is a triple: (G, E,D)
I 1. G(): randomized alg. that outputs a key pair (PA, pA)
I 2. E(PA,m): randomized alg. that takes m ∈ M and outputs c ∈ C
I 3. D(pA, c): deterministic alg. that takes a private key (pA) and a

cyphertext c ∈ C
I and outputs a message m ∈ M or ⊥

I With the following consistency condition:
I ∀(PA,pA)∈dom(G)∀m∈M D(pA, E(PA,m)) = m

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 97

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Security of Public Key Encryption Sys

I (G, E,D) is semantically secure
I under CCA (chosen ciphertext attack)

I iff A, the Adversary, can only win the following game with a
negligible probability

Game

I Setup: (PA, pA)← G()
I CCA-Phase: A chooses any (polynomial) number of

I ciphertexts ci and receives D(ci)
I Challenge: A chooses messages m0,m1

I The challenger chooses m? ← {m0,m1} (not known to A)
I and sends c? = E(PA,m?) to A

I Guess: A guesses if c? corresponds to m0 or m1
I A wins if he chooses correctly

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 98

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Info Subgroups

I H ⊆ G is a subgroup of G
I written as H ≤ G

⇔
I H is itself a group with respect to the operation of G

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 99

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Info Lagrange’s Theorem: H ≤ G⇒ |H| divides |G|

I Proof: Let G be a group
I H be a subgroup of G

I For each x ∈ G consider

xH := {x ◦ h | h ∈ H}

Claim 1: the sets xH are all of the size

Claim 2: the sets xH form a partition of G

Claims⇒ size of H divides size of G

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 100

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Claim 1: the sets xH are all of the size

For any x , |xH| = |H|:

The function from H to xH

I h ∈ H 7→ x ◦ h ∈ xH

is a bijection
I it is 1-1

I x ◦ h1 = x ◦ h2 ⇒ h1 = h2

I cancelling x , i.e multyplying to the left with x−1

I and onto
I because xH := {xh | h ∈ H}

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 101

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Claim 2: the sets xH form a partition of G

x ∈ xH (since e ∈ H), it remains to show

For x , y ∈ G, xH 6= yH ⇒ xH ∩ yH = ∅
If xH ∩ yH 6= ∅ then

I there are h1, h2 ∈ H such that
I x ◦ h1 = y ◦ h2
I and thus for any h ∈ H it follows

I x ◦ h = y ◦ h2 ◦ h−1
1 ◦ h ∈ yH

Thus xH ⊆ yH and

I by symmetry xH = yH

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 102

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Info Exercise on Lagrange’s Theorem

I Let G be a group
I H be a subgroup of G
I x ∈ G and xH := {x · h | h ∈ H} as before

I For every x , y ∈ G let
I x ∼ y :⇔ xH = yH
I x ∼ y ⇔ x−1y ∈ H

I ∼ is an equivalence relation and the equivalence classes are
precisely the sets xH

I Exercice: In the particular case of G = (Z, +) and H = nZ the
subgroup of multiples of n

I calculate ∼ and G/ ∼

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 103

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Info Fermat’s Theorem, Euler’s Theorem

Defs (recall): Order, generator

Assume G is a finite group,

I 〈g〉 := {g i : i ∈ Z} = {1, g, g2, g3, . . . , gorder(g)−1}
I |〈g〉| = order(g) := mini{g i = 1}

g ∈ G is called a generator of G if

I 〈g〉 = G or equivalently,

I the order of g is |G|

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 104

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Info Fermat’s Theorem, Euler’s Theorem

Euler’s Theorem

The order of any g ∈ G divides |G|
I This follows directly from Lagrange’s Theorem

I since the size of the subgroup 〈g〉
I divides the size of the group

Fermat’s Theorem

For every prime p and g ∈ N,
I gp−1 = 1 (mod p)

I This follows directly from Euler’s Theorem
I Exercise: Fill in the details!!

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 105

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Info Application: generating random primes

I Suppose we want to generate a large random prime p of length
1024 bits (i.e. p ≈ 21024)

I Choose a random integer p ∈ [21024, 21025 − 1]
I Test if 2p−1 = 1 in Zp

I If yes, done
I If not, try another p

I This is a simple algorithm, but not the best

Pr[p passes the test but is not prime] < 2−60

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 106

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Info Choosing a Group

I For some cryptographic applications
I we need prime-order groups

I Because some problems, like dlog, are easier
I if the order of the group has small prime factors

I To find a prime-order subgroup of some Z∗p, where p prime:
I First find primes p, q and a number t s.th. p = tq + 1

I Take the subgroup of t th powers, i.e.,
I G = (Z∗p)t := {x t | x ∈ Z∗p }

I This is a group because x t · y t = (x · y)t

I It has order (p − 1)/t = q
I Since q is prime, the group is cyclic

I In particular, p = 2q + 1
I p is called a "safe prime" and

I (Z∗p)2 is the group of quadratic residues

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 107

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Info Determining a generator: Primitive root modulo n

I Definition ordZ∗n (a) is called the multiplicative order of
I a modulo n

g is a primitive root modulo n

⇔ ordZ∗n (g) = φ(n)

⇔ ordZ∗n (g) = |Z∗n|
⇔ ordZ∗n (g) = min{k | gk−1 = 1}

I has to be the smallest power of a which is congruent to 1 modulo
n

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 108

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Info Example:

I Consider the multiplicative group of Zp = {1, 2, . . . , p − 1} under
multiplication

I Say for p = 11, we have G = {1, 2, . . . , 10}, and not all elements
are generators, e.g. 11 is not

I But 2 is a generator of Z11:
I 21 = 2, 22 = 4, 23 = 8, 24 = 16 = 5, 25 = 10 = −1,
I 26 = −2 = 9, 27 = −4 = 7, 28 = −8 = 3, 29 = 6, 210 = 12 = 1

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 109

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Info Algorithm: Finding a Generator for Z∗p

I If we choose p = 2q + 1, where q is also prime (p is called a "safe
prime") then g 6= ±1 is a generator of Z ∗p iff

I g(p−1)/2 ≡p −1

I This is easy to see: the order of g ∈ Z∗p must divide the order of
Z∗p, which is (p − 1) = 2 · q, but if g(p−1)/2 = gq ≡p −1 and

I g2 6≡p 1 (because g 6= ±1), then the order of g must be (p − 1)

I There are φ(φ(n)) = φ(2q) = q − 1 many primitive elements,
picking a few random numbers and testing them will give a
generator

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 110

N Flavor Hash Small+Large Alg Hard One-Way OTP, PRG RSA KAgr Lagrange,Euler,Fermat Adv

Info Algorithm: Finding a Generator for Z∗p

More generally,

I given a prime p, along with the prime factorization

I p − 1 = Π r
i=1pki

i

The following non-deterministic algorithm outputs a generator for Z∗p
I for i ← 1 to r do

I loop
I choose α← Z∗p

I until α(p−1)/pi 6= 1
I γi ← α(p−1)/pki

i

I output γ ← Π r
i=1γi

WS 18-19
Jorge Cuellar Crypto for PETs – Part 1 111

	N
	Flavor
	Hash
	Small+Large
	Alg
	Hard
	One-Way
	OTP, PRG
	RSA
	KAgr
	Lagrange,Euler,Fermat
	Adv

