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Crypto for PETs – Part 3
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Processing data securely in the Cloud

Assume that a "client" is working in a cloud ("server")
I and some data fields are numbers (sensitive values)

I say, amounts of money in Euro
I they must be maintained encrypted

I so that the cloud provider (the server) or any other in the cloud
I is not able to read the cleartext

But the client wants to process the data in the cloud
I That means: upload a program to the could,

I do the arithmetic processing there
I fetch back the data

I and — only then — decrypt it

Is it possible to "calculate with encrypted data"?

WS 18-19
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Homomorphic Encryption

Homomorphic encryption

allows

I addition and/or multiplication
I to be carried out on the encrypted values

I when the result is decrypted, it yields the same result
I as the same calculation on the unencrypted inputs:

I D (E(v1) ◦ E(v2)) = (v1 ◦ v2)

In other words,

I (E(v1) ◦ E(v2)) is one encryption of (v1 ◦ v2)

Fully-homomorphic encryption (for both, addition and mult)

I is ongoing research
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Recall: RSA with public parameter n = p · q

p, q: two random secret primes

I d : the public key is a random number: 1 < d < n − 1

I e: the private key is a number with: d · e ≡(p−1)(q−1) 1

Message m is encrypted as

I E(m) := me ∈ Z∗n
and c = E(m) is decrypted via

I D(c) := cd ∈ Z∗n
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Homomorphic Encryption

RSA is multiplicatively homomorphic:

If you encrypt two numbers separately,
I using the same secret key,

I multiply the ciphertexts, then decrypt the result,

I you get the same result that you would get
I if you multiplied the two original numbers

But RSA is not homomorphic for addition
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Homomorphic Encryption

RSA is Multiplicatively Homomorphic

RSA is multiplicative homomorphic:

I E(m1) · E(m2) = E(m1 ·m2)

Given

I ci = E(mi ) = me
i mod N

c1 = me
1 modN

c2 = me
2 modN

c1 · c2 = me
1 ·me

2 modN
= (m1 ·m2)e modN
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Jorge Cuellar Crypto for PETs – Part 3 6



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

HomEnc OT DC MPC ZKP Adv

Homomorphic encryption for Aggregation

Homomorphic cryptosystems are used to create aggregated data
I calculate some statistics (averages, sums, etc) on personal data

I that hide (in some cases) the values of the sensitive personal data

Homomorphic encryption can be used

I for example secure voting systems

I for private information retrieval schemes

I and many more
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El Gamal Encryption

S R

gx
Y = gy

k = Y x = gxy

DH

S R

gx
PK = gpk

PK x ·m
EG

Public parameters:

I G, a group,

I |G|, the order of the group,

I g, a generator of G

The public key is

I PK = gpk ∈ G for some secret private key pk ∈ {1, . . . , |G| − 1}
To encrypt a message m ∈ G,

I generate a random x ∈ {1, . . . , |G|}
I E(m) := (gx , PK x ·m)
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El Gamal is a homomorphic encryption

Given encryptions

I E(m1) = (gx1 , PK x1 ·m1)

I E(m2) = (gx2 , PK x2 ·m2)

Then the pointwise product of those two encrypted messages
I E(m1) · E(m2) =

I (gx1 , PK x1 ·m1) · (gx2 , PK x2 ·m2) :=
I (gx1 · gx2 , PK x1 ·m1 · PK x2 ·m2)

I is an encryption of the product (m1) · (m2)

Proof:

I If we multiply two messages componentwise, we get

(gx1 , PK x1 ·m1)·(gx2 , PK x2 ·m2) = (gx1+x2 , PK x1+x2 ·m1·m2) = (gx , PK x ·(m1·m2))

El Gamal is homomorphic with respect to multiplication
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Oblivious Transfer

An oblivious transfer protocol (OT)
I is a type of query-response protocol

The "client" or "receiver" asks for a piece of information
I say: an entry of a DB

The "server" or "sender" responds with the information
I or with nothing

I BUT: he remains oblivious (= unaware, unconscious) about
I the content of the query
I what piece (if any) has been transferred

In some variants of OT
I it is not a query-response protocol

I simply a "send" protocol

I where a sender transfers one of
I piece of information to a receiver out of a set

I without knowing which one
WS 18-19
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1-2 Oblivious Transfer

Recall first D-H:

I A chooses a← Zp, A = ga

I B chooses b ← Zp, B = gb

A A−−−−−−−→ B

A B←−−−−−−− B

A
e←Ek (m)−−−−−−−−→ B

Where Ek is encryption with the key k known to both: k = Ba = Ab

I Observe that Alice can also derive
I B̂a = ( B

A )a

I but Bob cannot compute it this group element (assuming CDH)
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1-2 Oblivious Transfer

Consider the following D-H variant:

I A chooses a← Zp, A = ga

I B chooses b ← Zp, B = gb

A A−−−−−−−→ B

A B̃=AB←−−−−−−−− B

A
e←Ek (m)−−−−−−−−→ B

Where Ek is encryption with the key k known to both:

I k = ( B̃
A )a = ( AB

A )a = Ab
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Oblivious Transfer

I A has two messages m0, m1

I B wants message i
I As above

I A chooses a← Zp, A = ga

I B chooses b ← Zp, B = gb

Depending on i , in the second message, B either sends

I B̃ = B if c = 0 or

I B̃ = AB if c = 1

Now A calculates both

I k0 = (B̃)a

I k1 = ( B̃
A )a

and sends both e0 ← Ek0 (m0) and e1 ← Ek1 (m1)
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Info Threshold Decryption and Threshold Signatures

I A threshold public key encryption system is a
I public key system where the private key is

I distributed among n decryption servers so that
I at least k servers are needed for decryption

I In a threshold encryption system an entity
I called the combiner

I has a ciphertext c that it wishes to decrypt

I The combiner sends c to the decryption servers
I and receives partial decryption shares

I from at least k out of the n decryption servers

I It then combines these k partial decryptions
I into a complete decryption of c

I Ideally, there is no other interaction in the system
I namely the servers need not talk to each other during decryption

I Such threshold systems are called non-interactive
WS 18-19
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Dining cryptographers

I David Chaum proposed 1988 the Dining cryptographers
I showing it is possible to send anonymous messages with

I unconditional sender and recipient untraceability

I Cryptographers Ai for i = 1, 2, . . . , n around a table for dinner
I Ai has a secret si

I Collectively they want to calculate
I s1 ⊕ s2 ⊕ . . .⊕ si . . .⊕ sn
I Σi si (mod 2)
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Dining cryptographers, "Toy Use Case":

I The waiter informs them that the meal
I has been paid for by someone

I who could be one of the cryptographers or their boss

I The cryptographers respect each other’s right to
I make an anonymous payment

I but want to find out whether the boss paid
I (The boss has no privacy right here)
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Dining cryptographers

I Notice that each cryptographer has a secret si
I which is 1 if he paid for the meal and 0 else

I So they decide to execute a two-stage protocol
I In the first phase

I Each two cryptographers Ai , Ai+1 sitting next to each other
I establish a shared random one-bit secret bi,i+1

I so that only those two cryptographers know the outcome
I Example with 3 cryptographers:

I A1, A2 share secret b1,2 = 1
I A2, A3 share b2,3 = 0
I A3, A1 share b3,4 = 1

WS 18-19
Jorge Cuellar Crypto for PETs – Part 3 17



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

HomEnc OT DC MPC ZKP Adv

Dining cryptographers: one solution

I Now each cryptographer
I publicly announces the bit

I ai = si ⊕ bi,i−1 ⊕ bi,i+1

I where i − 1, i + 1 are mod n

Then Σisi = Σiai , because in the second sum
I each of the numbers bi,i−1 appears twice (in ai and in ai+1)

I and therefore cancel out

Thus the sum Σiai reveals if one of the si is one

I That is, one of the cryptographers paid
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Dining cryptographers: one solution

I In other words
I if Ai didn’t pay for the meal

I he shows the xor of
I the two shared bits he holds with his neighbours

I if he did pay for the meal
I the opposite of that xor

I In the example (above)
I if none of the cryptographers paid, then

I A1 would announce b1 = 0 ⊕ 1 ⊕ 0 = 1,
I A2 would announce b2 = 0 ⊕ 1 ⊕ 1 = 0, and
I A3 would announce b3 = 0 ⊕ 0 ⊕ 1 = 1

I On the other hand
I if A1 paid, he would announce

I b2 = 1 ⊕ 1 ⊕ 1 = 1
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Dining cryptographers: one solution

I Notice that the xor of
I all the announced bits bi is 0

I iff none of the cryptographers paid
I so the boss must have paid

I Otherwise if the xor of
I all the announced bits bi is 1

I then one of the cryptographers paid
I but his identity remains unknown
I to anybody, including the other cryptographers

I Anonymous communication networks
I based on this problem are often known as DC-nets
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Secure Multi-Party Computations

Assume n parties P1, . . . , Pn

I each one in possession of a (secret) value xi

The parties want to calculate a set of functions
I f̄ (x̄) = f1(x1, . . . , xn, r ), . . . , fn(x1, . . . , xn, r ) with r ← D

I over their data, (x1, . . . , xn),
I plus perhaps a (common) random input r , with:

Requirements

I Party Pi should learn the result fi (x1, . . . , xn, r ) and
I should learn nothing else

I No external to the protocol (eavesdropper)
I should learn anything

I This should hold even
I if an arbitrary subset of the parties maliciously deviates from the

protocol
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Secure Multi-Party Computations

This can be easily done if the parties have
I direct, unrestricted and secure access to an

I "angelic" trusted third party (T3P)

Then: each party Pi sends the input xi to the T3P
I over an ideal secure channel

I no one can read or modify this value

The T3P computes y1 = f1(x1, . . . , xn, r ), . . . , yn = fn(x1, . . . , xn, r )
I sends yi to Pi

I (over the secure channel)
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Secure Multi-Party Computations

Secure multi-party computations do the same thing
I but not relying on a third party

I but rather only on cryptographical methods

Def: a protocol π securely realizes f̄ (x̄) if

running π emulates
I an ideal process where

I all parties secretly provide inputs to an trusted party
I which computes f̄ and returns the outputs to the parties

I and any "harm" done by a ppt adversary
I in the real execution ofπ

I could have been done by
I a ppt in the ideal process
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Secure Multi-Party Computations

I The T3P solution provides not only security against individual
cheaters

I also ensures security if several parties are colluding throughout
the entire execution

I If some set B of parties collude
I then the parties in that set learn the union of what they each learn

individually
I but nothing more

I The solution using a trusted party is "the best one could hope for"
I (if the T3P is really trustworthy)

I and we will therefore take this as our "ideal world"

I In the real world, in contrast
I there may not exist any trusted parties that all the players agree

upon
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Secure Multi-Party Computations

I Protocols for secure computation should provide a way for

I P1, . . . , Pn to achieve the security guarantees of the ideal world
without the T3P

I Roughly speaking
I a protocol is "secure" if the actions of any colluding parties in the

real world can be emulated by those same parties in the ideal
world

I But let us generalize the model a bit by introducing randomicity
and introducing a "don’t care" notion
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Secure Multi-Party Computations

I The concept of Secure Multi-Party Computation generalizes
I confidentiality and integrity of data

Example/Exercise

Describe the problem of
I secure (confidentiality and integrity protected) communication

I from P1 to P2

as a MPC problem of computing the function f?(x?) = x?
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Secure Multi-Party Computations

Recall we have n parties

I each one in possession of a (secret) value xi

They want to calculate
I f1(x1, . . . , xn, r ), . . . , fn(x1, . . . , xn, r ) with r ← D

I (with some additional random input r )

I and party i gets exactly the result of fi

Shorthand F (x1, x2, . . . , xn) :=

(f1(x1, x2, . . . , xn, r ), . . . , fn(x1, x2, . . . , xn, r ))
I F is the function that

I takes all the inputs from all parties and
I calculates all the outputs for them

I
Info

(Remark: F is non-deterministic, while each fi is)
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Secure Multi-Party Computations

I The concept of Secure Multi-Party Computation is
I very general and
I very strong

Examples

I F (x1, . . . , xn) = x1 + ... + xn a simple sum function
I where all parties get the same value

I F (x1, . . . , xn) = MAX (x1, ..., xn) a max-value function
I F (−, . . . ,−) = r ← D a simple coin toss function

I Here the main requirement is that the output remains unbiased in
spite of any malicious behavior
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Secure Multi-Party Computations

Examples

I F ((x0, x1), b) = (−, xb(b ← {0, 1}))
I This is 1-of-2 oblivious transfer:
I Party 2 learns one of two values that party 1 had
I and party 1 doesn’t know which value party 2 learned

I FR((x , w),−) = (−, (x , R(x , w))) where R(x , w) is a binary
relation

I This is a modelling of Zero-Knowledge (we have correctness and
soundness)

I This is also a proof of knowledge of a witness
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MPC Yao’s Garbled Circuits

Assume parties P1 and P2 share a Boolean Circuit fc for f = (f1, f2)

I With inputs i1 that will be provided by P1 and

I i2 to be provided by P2

This circuit is in "cleartext":
I It has a finite number of wires w1, w2, . . . and gates g1, g2 . . .

I Each gate gi is given by a "truth table" on three wires

I In a moment we will explain
I how wires and gates can be "garbled",

I constructing a "garbled circuit"
I how to evaluate a "garbled circuit":

I given garbled wire values
I how to calculate the garbled output wire

The high-level view of Yao’s construction is given in the next slide
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MPC Yao’s Garbled Circuits, Overview

1. P1 garbles each wire and each gate of the clear-text circuit fc
I except the output bits of f2
I creating garbled circuit fg

2. P1 sends fg and the garbled values for his inputs i1
3. P2 uses OT to get the garbled values of his inputs i2 in fg
4. P2 calculates fg with the garbled versions of i1 and i2

I obtains his output f1 and sends to P1 the garbled values for f2
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MPC A Circuit in Cleartext

G1

G2

G3

w1

w2

w5

w3

w4 w6

w7

Where the gates are given by tables, i.e for G3 (an or-gate):

w5 w6 w7

0 0 0
0 1 1
1 0 1
1 1 1

Figure: Gate G3: w7 = w5 ∨ w6 in cleartext
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Garbling the wires

For each wire number w := 1, 2, 3, . . . and possible value on the wire
(v := 0, 1)

I choose a random number called the "random encoding" ev
w

I Thus e1
5 encodes the fact that "wire 5 has value 1"

The first party has thus a (secret) "translation table" for all possible
values for all wires:

wire value encoded − value

w1 0 e0
1

w1 1 e1
1

w2 0 e0
2

w2 1 e1
2

. . . . . . . . .

Figure: Table: Encrypted Wire Values for all wires and all possible values

WS 18-19
Jorge Cuellar Crypto for PETs – Part 3 33



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

HomEnc OT DC MPC ZKP Adv

Garbling a Circuit

w5 w6 w7

e0
5 e0

6 e0
7

e0
5 e1

6 e1
7

e1
5 e0

6 e1
7

e1
5 e1

6 e1
7

(a) Gate G3 using
encrypted wires
w7 = w5 ∨ w6

garbled gate
h(e1

5||e0
6||g3)⊕ e1

7

h(e0
5||e0

6||g3)⊕ e0
7

h(e0
5||e1

6||g3)⊕ e1
7

h(e1
5||e1

6||g3)⊕ e1
7

(b) Garbled G3

(w7 = w5 ∨ w6)

Figure: Garbled Computation table for G3
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Calculating a Garbled Circuit

What is a garbled circuit?

It is a circuit, like one in cleartext:

I contains wires and gates
I contains tables representing the gates

I but those tables are not "truth tables" (cleartext)
I they are "Garbled Computation Tables" as in the previous slide

I (rows have the form, say: h(e0
5||e0

6||g3) ⊕ e0
7)

How can you calculate a garbled circuit?

As for a normal circuit, you calculate each gate at a time in sequence

I but you work with garbled wire values, not with Booleans

Given, as input, the garbled wire values of a garbled gate

I In our example, given for instance e0
5, e1

6

I It is easy to calculate h(e0
5||e1

6||g3)
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Calculating a Garbled Circuit

There is only one problem:
I the party who is calculating the garbled gate g3

I has some "strange" values as inputs, say e0
5 and e1

6
I but they are just some random looking numbers

I he does not know that they are e0
5 and e1

6
I they could be e1

5 and e0
6 (or any of the 4 combinations)

I thus, he does not know if he "is" in the row h(e0
5||e1

6||g3)⊕ e1
7

I or in another row, say h(e1
5||e1

6||g3)⊕ e1
7

I if he uses this row, he gets an incorrect answer for the garbled
value of w7

I You need some redundancy / markers / signals (see class)
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Concepts: Non-transferable Proof; Interactive protocol

An interactive protocol

Between 2 or more parties,

I requires both to be on-line simultaneously

Encrypting or signing a message is (typically) non-interactive:
I Say in secure email the sender is not necessarily on-line

I when the email message is decrypted or the signature is verified

Challange.response or ZKP (like Schnorr, see below)

I are typically interactive
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Concepts: Non-transferable Proof; Interactive protocol

A proof is "non-transferrable"

If it convinces "me" (the verifier)
I but the proof, no matter how I record it

I will not convince other people
I because it is easy for me to fake such proofs

It may be generated in

I an interactive or

I non-interactive protocol
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Concepts: Non-transferable Proof; Interactive protocol

I Example: a MAC (message authn code) is produced in
I a non-interactive protocol

I the proof is non-transferrable
I although it convinces me that it was generated

I by the only other entity that knows the key

Example

Key agreement is (typically) interactive
I but it is not a proof

I you may have key agreements based on shared keys
I or non-authenticated key agreements
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Interactive Zero-Knowledge Proofs

I An interactive proof
I transfers the conviction to the verifier

I that the claimed statement is true
I but does not leak any further information

I in particular, it does not create a transferable proof
I that could convince anybody else

I The interactive proof is zero-knowledge
I if the "transcript" of the proof

I could have been constructed by anybody

I We say: anybody could simulate any protocol transcript
I without interacting with the prover

I Of course, the transcript of the conversation
I is not convincing for any other party
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Proof of knowledge / proof of possession

I Given a "public number" z
I s.t there is a "secret number" x

I in a particular relation to z: R(x, z)

I Suppose P can be identified as the only entity
I who knows the secret x

I We want a method that allows P to
I prove that he knows the secret x

I without disclosing anything about x
I except that R(x, z)

I Example: Given
I a group G = ⟨g⟩, of order p,
I a generator g and
I z ∈ G (say, the token of P)

I P claims that he knows the secret x with z = gx

I A simple proof of this knowledge is Schnorr’s identification
scheme
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Schnorr’s identification scheme

I P claims to know x s.t gx = z

I P chooses randomly k

P
t=gk

−−−−−−−→ V

P c←−−−−−−− V

P r=cx+k−−−−−−−→ V

I V accepts if gr = tzc

I If P knows the secret x
I Then: gx = z, r = cx + k , and t = gk

I ⇒ gr = gk gcx = t(gx )c = tzc

I and therefore V accepts
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Properties of Schnorr’s identification scheme

I Schnorr’s identification scheme has 3 key properties:
I The proof presented to V

I cannot be used offline to demonstrate to anybody
I that P (or anyone) knows the secret x :

I in fact anybody could present a transcript
I simulating having carried out a successful exchange

I It is secure
I If V runs the protocol correctly

I and P does not know the secret x
I Then the probability that

I P is able to answer the challenge c (message 2) correctly
I is negligible

I The protocol discloses
I absolutely no information about the secret

I to V
I nor to anybody else
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Info Subgroups

I A subset G of the group Ĝ is a subgroup of Ĝ
I written as G ≤ Ĝ iff G is itself a group with respect to the

operation of Ĝ
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Info Lagrange’s Theorem: H subgroup of G⇒ |H| | |G|

I Proof: Let G be a group
I H be a subgroup of G. For each x ∈ G consider

xH := {x ◦ h | h ∈ H}

I We claim that the sets xH are all of the size of H and form a
partition of G

I It follows immediately that the size of H divides the size of G
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Info Lagrange’s Theorem: H subgroup of G⇒ |H| | |G|

I Two observations:
I For x , y ∈ G either xH and yH are equal or disjoint:

I If xH ∩ yH ̸= ∅ then there are h1, h2 ∈ H such that
I x ◦ h1 = y ◦ h2 and thus for any h ∈ H it follows
I x ◦ h = y ◦ h2 ◦ h−1

1 ◦ h ∈ yH
I Thus xH ⊆ yH and by symmetry xH = yH

I The function

(x ◦ ·) : H → xH,

h 7→ x ◦ h

I is 1-1 (x ◦ h1 = x ◦ h2 ⇒ h1 = h2

I cancelling x) and onto (by definition of xH)
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Info Exercise on Lagrange’s Theorem

I Let G be a group
I H be a subgroup of G
I x ∈ G and xH := {x · h | h ∈ H} as before

I For every x , y ∈ G let
I x ∼ y :⇔ xH = yH
I x ∼ y ⇔ x−1y ∈ H

I ∼ is an equivalence relation and the equivalence classes are
precisely the sets xH

I Exercise: In the particular case of G = (Z, +) and H = nZ the
subgroup of multiples of n

I calculate ∼ and G/ ∼
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Info Cyclic Groups

I Starting from any element g in any group Ĝ
I consider the set of all powers of g ∈ Ĝ

I This is a subgroup of Ĝ:

I it is denoted ⟨g⟩ and called the subgroup generated by g
I Note that this group ⟨g⟩ is always commutative

I even if Ĝ is not
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Info Subgroups, Cyclic Groups, Order of elements

I If ⟨g⟩ is finite
I its size is called the order of g (and the order of the subgroup ⟨g⟩)

I Thus ord(g) = ord(⟨g⟩) = |⟨g⟩| = min{i | g i = e}
I A group G is cyclic if it has an element g s.th
I G = ⟨g⟩
I Any finite cyclic group of order n is therefore of the form:
I G =
{e, g︸︷︷︸, g ◦ g︸ ︷︷ ︸, g ◦ g ◦ g︸ ︷︷ ︸, . . . , g ◦ g ◦ g ◦ g ◦ . . . ◦ g (n − 1 times)}︸ ︷︷ ︸

I

= {e, g, g2 , g3 , . . . , gn−1 }
I Notice that any two cyclic groups of the same order are

isomorphic
I In particular any cyclic groups is isomorphic to some "simple

group" of the form (Zn, +n) (next slide)
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Info A "simple" group

I Zn = {0, 1, 2, 3, . . . n− 1} with +n the sum modulo n as operation
is a group for each n ∈ N

I The size of the group is n
I This is an example of a "simple group" – that is a group where all

interesting operations are easy to evaluate – but
I as we will see
I it is isomorphic to some complex groups where corresponding

operations may be quite difficult

I It may sound strange that operations in one group G1 are simple
and the "same" operations in an isomorphic group G2 are difficult

I but it is possible that in one direction the isomorphism
I G1 → G2 is easy to calculate (say, using exponentiation)

I while the reverse isomorphism G2 → G1 may be difficult or even
infeasible to calculate (requiring the computation of a discrete
logarithm)
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Info Examples of Groups

I The following are groups:
I Z∗p: for some prime p

I is the set of elements
I {1, 2, 3, . . . p − 1} under the operation multiplication The size of

the group is p − 1

I Z7: consists of {1, 2, 3, 4, 5, 6}. For instance
I 5 ∗ 5 ≡7 25equiv74

I The inverse can be derived similarly
I for instance 3−1 is represented by 5 since 3 ∗ 5 ≡7 15 ≡7 1

I G = {1, 2, 4} is a group under the operation multiplication modulo
7

I G = {1, 2, 4, 6} is not a group under the operation multiplication
modulo 7 because it does not obey the closure property:

I 2 ∗ 6(mod 7) /∈ G

I Elliptic Curve groups
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Info Z∗n

I For a ∈ Z∗n, let the order of a be:

ordZ∗
n
(a) := min{k | ak ≡n 1}
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Info Fermat’s Theorem, Euler’s Theorem

I Defs (recall): Order, generator
I If G is finite, then

I ⟨g⟩ := {g i : i ∈ Z}
I is also finite; the size is

I |⟨g⟩| = order(g) := mini{g i = 1}
I Thus ⟨g⟩ = {1, g, g2, g3, . . . , gorder(g)−1}
I An element g ∈ G is called a generator of G if

I ⟨g⟩ = G or equivalently, the order of g is |G|
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Info Fermat’s Theorem, Euler’s Theorem

I Euler’s Theorem
I The order of every element g ∈ G divides |G|
I This follows from Lagrange’s Theorem, since the size of the

subgroup
I ⟨g⟩ must divide the size of the group

I A simple consequence is:
I Fermat’s Theorem For every prime p and g ∈ N,

I gp−1 = 1 (mod p)
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Info Application: generating random primes

I Suppose we want to generate a large random prime p of length
1024 bits (i.e. p ≈ 21024)

I Choose a random integer p ∈ [21024, 21025 − 1]
I Test if 2p−1 = 1 in Zp

I If yes, done
I If not, try another p

I This is a simple algorithm, but not the best

Pr[p passes the test but is not prime] < 2−60

WS 18-19
Jorge Cuellar Crypto for PETs – Part 3 55


	HomEnc
	OT
	DC
	MPC
	ZKP
	Adv

