HomEnc OT DC MPC ZKP Adv

Crypto for PETs – Part 3

Jorge Cuellar

WS 18-19

Processing data securely in the Cloud

Assume that a "client" is working in a cloud ("server")

- and some data fields are numbers (sensitive values)
 - say, amounts of money in Euro
 - they must be maintained encrypted
 - so that the cloud provider (the server) or any other in the cloud
 - is not able to read the cleartext

But the client wants to process the data in the cloud

- That means: upload a program to the could,
 - do the arithmetic processing there
 - fetch back the data
 - and only then decrypt it

Is it possible to "calculate with encrypted data"?

Homomorphic Encryption

Homomorphic encryption

allows

- addition and/or multiplication
- to be carried out on the encrypted values
 - when the result is decrypted, it yields the same result
 - as the same calculation on the unencrypted inputs:

In other words.

• $(\mathscr{E}(v_1) \circ \mathscr{E}(v_2))$ is one encryption of $(v_1 \circ v_2)$

Fully-homomorphic encryption (for both, addition and mult)

is ongoing research

Recall: RSA with public parameter $n = p \cdot q$

p, q: two random secret primes

- ▶ d: the public key is a random number: 1 < d < n-1
- e: the *private key* is a number with: $d \cdot e \equiv_{(p-1)(q-1)} 1$

Message *m* is encrypted as

$$\triangleright$$
 &(m) := $m^e \in \mathbb{Z}_n^*$

and $c = \mathcal{E}(m)$ is decrypted via

$$\triangleright$$
 $D(c) := c^d \in \mathbb{Z}_n^*$

HomEnc OT DC MPC ZKP Adv

Homomorphic Encryption

RSA is multiplicatively homomorphic:

If you encrypt two numbers separately,

- using the same secret key,
 - multiply the ciphertexts, then decrypt the result,
- you get the same result that you would get
 - if you multiplied the two original numbers

But RSA is not homomorphic for addition

Homomorphic Encryption

RSA is Multiplicatively Homomorphic

RSA is multiplicative homomorphic:

$$\& \mathscr{E}(m_1) \cdot \mathscr{E}(m_2) = \mathscr{E}(m_1 \cdot m_2)$$

Given

►
$$c_i = \mathcal{E}(m_i) = m_i^e \mod N$$

 $c_1 = m_1^e \mod N$
 $c_2 = m_2^e \mod N$
 $c_1 \cdot c_2 = m_1^e \cdot m_2^e \mod N$
 $c_1 \cdot m_2 = m_1^e \cdot m_2^e \mod N$

HomEnc

Homomorphic encryption for Aggregation

Homomorphic cryptosystems are used to create aggregated data

- calculate some statistics (averages, sums, etc) on personal data
 - that hide (in some cases) the values of the sensitive personal data

Homomorphic encryption can be used

- for example secure voting systems
- for private information retrieval schemes
- and many more

El Gamal Encryption

Public parameters:

- ► G, a group,
- ightharpoonup |G|, the order of the group,
- g, a generator of G

$$\begin{array}{c|c}
S & F \\
Y = g^{y} \\
\hline
k = Y^{x} = g^{xy}
\end{array}$$
DH

The public key is

▶ $PK = g^{pk} \in G$ for some secret private key $pk \in \{1, \dots, |G| - 1\}$

To encrypt a message $m \in G$,

- generate a random $x \in \{1, \dots, |G|\}$
- \triangleright $\mathscr{E}(m) := (g^x, PK^x \cdot m)$

El Gamal is a homomorphic encryption

Given encryptions

- $\triangleright \ \mathscr{E}(m_1) = (g^{x_1}, PK^{x_1} \cdot m_1)$
- $\triangleright \ \mathscr{E}(m_2) = (g^{x_2}, PK^{x_2} \cdot m_2)$

Then the pointwise product of those two encrypted messages

- $\triangleright \mathscr{E}(m_1) \cdot \mathscr{E}(m_2) =$
 - $(g^{x_1}, PK^{x_1} \cdot m_1) \cdot (g^{x_2}, PK^{x_2} \cdot m_2) :=$
 - $(g^{x_1} \cdot g^{x_2}, PK^{x_1} \cdot m_1 \cdot PK^{x_2} \cdot m_2)$
- ▶ is an encryption of the product $(m_1) \cdot (m_2)$

Proof:

If we multiply two messages componentwise, we get

$$(g^{x_1}, PK^{x_1} \cdot m_1) \cdot (g^{x_2}, PK^{x_2} \cdot m_2) = (g^{x_1 + x_2}, PK^{x_1 + x_2} \cdot m_1 \cdot m_2) = (g^x, PK^x \cdot (m_1 \cdot m_2))$$

El Gamal is homomorphic with respect to multiplication

An oblivious transfer protocol (OT)

is a type of query-response protocol

The "client" or "receiver" asks for a piece of information

say: an entry of a DB

The "server" or "sender" responds with the information

- or with nothing
 - ▶ BUT: he remains oblivious (= unaware, unconscious) about
 - the content of the query
 - what piece (if any) has been transferred

In some variants of OT

- it is not a query-response protocol
 - simply a "send" protocol
- where a sender transfers one of
 - piece of information to a receiver out of a set
 - without knowing which one

1-2 Oblivious Transfer

Recall first D-H:

- ▶ A chooses $a \leftarrow \mathbb{Z}_p$, $A = g^a$
- ▶ B chooses $b \leftarrow \mathbb{Z}_p$, $B = g^b$

$$A \xrightarrow{a} B$$

$$A \xleftarrow{B} B$$

$$A \xrightarrow{e \leftarrow E_k(m)} B$$

Where E_k is encryption with the key k known to both: $k = B^a = A^b$

- Observe that Alice can also derive
 - $ightharpoonup \widehat{B}^a = (\frac{B}{A})^a$
 - but Bob cannot compute it this group element (assuming CDH)

1-2 Oblivious Transfer

Consider the following D-H variant:

- ► A chooses $a \leftarrow \mathbb{Z}_p$, $A = g^a$
- ▶ B chooses $b \leftarrow \mathbb{Z}_p$, $B = g^b$

$$A \xrightarrow{A} E$$

$$A \leftarrow \widetilde{B} = AB$$

$$A \xrightarrow{e \leftarrow E_k(m)} E$$

Where E_k is encryption with the key k known to both:

$$k = (\frac{\widetilde{B}}{A})^a = (\frac{AB}{A})^a = A^b$$

Oblivious Transfer

- ▶ A has two messages m₀, m₁
- B wants message i
- As above
 - ▶ A chooses $a \leftarrow \mathbb{Z}_p$, $A = g^a$
 - ▶ B chooses $b \leftarrow \mathbb{Z}_p$, $B = g^b$

Depending on i, in the second message, B either sends

$$\widetilde{B} = B \text{ if } c = 0 \text{ or }$$

$$ightharpoonup \widetilde{B} = AB \text{ if } c = 1$$

Now A calculates both

$$ightharpoonup k_0 = (\widetilde{B})^a$$

$$k_1 = (\frac{\widetilde{B}}{A})^a$$

and sends both $e_0 \leftarrow E_{k_0}(m_0)$ and $e_1 \leftarrow E_{k_1}(m_1)$

Threshold Decryption and Threshold Signatures

- A threshold public key encryption system is a
 - public key system where the private key is
 - distributed among n decryption servers so that
 - at least k servers are needed for decryption
- In a threshold encryption system an entity
 - called the combiner
 - has a ciphertext c that it wishes to decrypt
- ▶ The combiner sends *c* to the decryption servers
 - and receives partial decryption shares
 - from at least k out of the n decryption servers
- It then combines these k partial decryptions
 - into a complete decryption of c
- Ideally, there is no other interaction in the system
 - namely the servers need not talk to each other during decryption
- Such threshold systems are called non-interactive

- David Chaum proposed 1988 the Dining cryptographers
 - showing it is possible to send anonymous messages with
 - unconditional sender and recipient untraceability
- ► Cryptographers A_i for i = 1, 2, ..., n around a table for dinner
 - A_i has a secret s_i
- Collectively they want to calculate
 - $\triangleright s_1 \oplus s_2 \oplus \ldots \oplus s_i \ldots \oplus s_n$
 - \triangleright $\Sigma_i s_i \pmod{2}$

Dining cryptographers, "Toy Use Case":

- The waiter informs them that the meal
 - has been paid for by someone
 - who could be one of the cryptographers or their boss
- The cryptographers respect each other's right to
 - make an anonymous payment
 - but want to find out whether the boss paid
 - (The boss has no privacy right here)

- Notice that each cryptographer has a secret s_i
 - which is 1 if he paid for the meal and 0 else
- So they decide to execute a two-stage protocol
- In the first phase
 - ▶ Each two cryptographers A_i , A_{i+1} sitting next to each other
 - establish a shared random one-bit secret b_{i,i+1}
 - so that only those two cryptographers know the outcome
 - Example with 3 cryptographers:
 - \blacktriangleright A_1, A_2 share secret $b_{1,2} = 1$
 - A_2 , A_3 share $b_{2,3} = 0$
 - A_3 , A_1 share $b_{3,4} = 1$

Dining cryptographers: one solution

- Now each cryptographer
 - publicly announces the bit

$$\triangleright$$
 $a_i = s_i \oplus b_{i,i-1} \oplus b_{i,i+1}$

▶ where
$$i - 1$$
, $i + 1$ are mod n

Then $\Sigma_i s_i = \Sigma_i a_i$, because in the second sum

- each of the numbers $b_{i,i-1}$ appears twice (in a_i and in a_{i+1})
 - and therefore cancel out

Thus the sum $\Sigma_i a_i$ reveals if one of the s_i is one

► That is, one of the cryptographers paid

- In other words
 - if A_i didn't pay for the meal
 - he shows the xor of
 - the two shared bits he holds with his neighbours
 - if he did pay for the meal
 - the opposite of that xor
- In the example (above)
 - if none of the cryptographers paid, then
 - ▶ A_1 would announce $b_1 = 0 \oplus 1 \oplus 0 = 1$,
 - ► A_2 would announce $b_2 = 0 \oplus 1 \oplus 1 = 0$, and
 - ► A_3 would announce $b_3 = 0 \oplus 0 \oplus 1 = 1$
- On the other hand
 - if A₁ paid, he would announce
 - ▶ $b_2 = 1 \oplus 1 \oplus 1 = 1$

$^{ m)}$ Dining cryptographers: one solution,

- Notice that the xor of
 - all the announced bits b_i is 0
 - iff none of the cryptographers paid
 - so the boss must have paid
- Otherwise if the xor of
 - all the announced bits b_i is 1
 - then one of the cryptographers paid
 - but his identity remains unknown
 - to anybody, including the other cryptographers
- Anonymous communication networks
 - based on this problem are often known as DC-nets

Assume *n* parties P_1, \ldots, P_n

each one in possession of a (secret) value x_i

The parties want to calculate a set of functions

- $\bar{f}(\bar{x}) = f_1(x_1, \dots, x_n, r), \dots, f_n(x_1, \dots, x_n, r) \text{ with } r \leftarrow \mathcal{D}$
 - over their data, (x_1, \ldots, x_n) ,
 - ▶ plus perhaps a (common) random input *r*, with:

Requirements

- ▶ Party P_i should learn the result $f_i(x_1, ..., x_n, r)$ and
 - should learn nothing else
- No external to the protocol (eavesdropper)
 - should learn anything
- This should hold even
 - if an arbitrary subset of the parties maliciously deviates from the protocol

Secure Multi-Party Computations

This can be easily done if the parties have

- direct, unrestricted and secure access to an
 - "angelic" trusted third party (T3P)

Then: each party P_i sends the input x_i to the T3P

- over an ideal secure channel
 - no one can read or modify this value

The T3P computes $y_1 = f_1(x_1, ..., x_n, r), ..., y_n = f_n(x_1, ..., x_n, r)$

- sends y_i to P_i
 - (over the secure channel)

Secure multi-party computations do the same thing

- but not relying on a third party
 - but rather only on cryptographical methods

Def: a protocol π securely realizes $\bar{f}(\bar{x})$ if

running π emulates

- an ideal process where
 - all parties secretly provide inputs to an trusted party
 - which computes \bar{f} and returns the outputs to the parties
- and any "harm" done by a ppt adversary
 - in the real execution of π
- could have been done by
 - a ppt in the ideal process

- The T3P solution provides not only security against individual cheaters
 - also ensures security if several parties are colluding throughout the entire execution
 - If some set B of parties collude
 - then the parties in that set learn the union of what they each learn individually
 - but nothing more
- The solution using a trusted party is "the best one could hope for"
 - (if the T3P is really trustworthy)
 - and we will therefore take this as our "ideal world"
- In the real world, in contrast
 - there may not exist any trusted parties that all the players agree upon

- Protocols for secure computation should provide a way for
- \triangleright P_1, \ldots, P_n to achieve the security guarantees of the ideal world without the T3P
- Roughly speaking
 - a protocol is "secure" if the actions of any colluding parties in the real world can be emulated by those same parties in the ideal world
- But let us generalize the model a bit by introducing randomicity and introducing a "don't care" notion

Secure Multi-Party Computations

- ► The concept of Secure Multi-Party Computation generalizes
 - confidentiality and integrity of data

Example/Exercise

Describe the problem of

- secure (confidentiality and integrity protected) communication
 - from P_1 to P_2

as a MPC problem of computing the function $f_{?}(x_{?}) = x_{?}$

WS 18-19

MPC

Secure Multi-Party Computations

Recall we have *n* parties

each one in possession of a (secret) value x_i

They want to calculate

- $ightharpoonup f_1(x_1,\ldots,x_n,r),\ldots,f_n(x_1,\ldots,x_n,r)$ with $r\leftarrow \mathcal{D}$
 - (with some additional random input r)
- and party i gets exactly the result of f_i

Shorthand $F(x_1, x_2, \ldots, x_n) :=$

$$(f_1(x_1, x_2, \ldots, x_n, r), \ldots, f_n(x_1, x_2, \ldots, x_n, r))$$

- F is the function that
 - takes all the inputs from all parties and
 - calculates all the outputs for them
- (Remark: F is non-deterministic, while each f_i is)

- The concept of Secure Multi-Party Computation is
 - very general and
 - very strong

Examples

- $F(x_1, \ldots, x_n) = x_1 + \ldots + x_n$ a simple sum function
 - where all parties get the same value
- $F(x_1,...,x_n) = MAX(x_1,...,x_n)$ a max-value function
- ► $F(-,...,-) = r \leftarrow \mathcal{D}$ a simple coin toss function
 - Here the main requirement is that the output remains unbiased in spite of any malicious behavior

Secure Multi-Party Computations

Examples

- $F((x_0, x_1), b) = (-, x_b(b \leftarrow \{0, 1\}))$
 - This is 1-of-2 oblivious transfer:
 - Party 2 learns one of two values that party 1 had
 - and party 1 doesn't know which value party 2 learned
- $F_R((x, w), -) = (-, (x, R(x, w)))$ where R(x, w) is a binary relation
 - This is a modelling of Zero-Knowledge (we have correctness and soundness)
 - This is also a proof of knowledge of a witness

Assume parties P1 and P₂ share a Boolean Circuit f_c for $f = (f_1, f_2)$

- ▶ With inputs i₁ that will be provided by P1 and
- i₂ to be provided by P2

This circuit is in "cleartext":

- ▶ It has a finite number of wires w_1, w_2, \ldots and gates $g_1, g_2 \ldots$
 - Each gate g_i is given by a "truth table" on three wires
- In a moment we will explain
 - how wires and gates can be "garbled",
 - constructing a "garbled circuit"
 - how to evaluate a "garbled circuit":
 - given garbled wire values
 - how to calculate the garbled output wire

The high-level view of Yao's construction is given in the next slide

- 1. P1 garbles each wire and each gate of the clear-text circuit f_c
 - except the output bits of f₂
 - creating garbled circuit fg
- 2. P1 sends f_q and the garbled values for his inputs i_1
- 3. P2 uses OT to get the garbled values of his inputs i_2 in f_g
- 4. P2 calculates f_g with the garbled versions of i_1 and i_2
 - obtains his output f₁ and sends to P1 the garbled values for f₂

MPC A Circuit in Cleartext

Where the gates are given by tables, i.e for G_3 (an or-gate):

W ₅	<i>W</i> ₆	W ₇
0	0	0
0	1	1
1	0	1
1	1	1

Figure: Gate G_3 : $w_7 = w_5 \lor w_6$ in cleartext

WS 18-19

WS 18-19

For each wire number $w := 1, 2, 3, \dots$ and possible value on the wire (v := 0, 1)

- lacktriangle choose a random number called the "random encoding" e_w^v
 - ▶ Thus e_5^1 encodes the fact that "wire 5 has value 1"

The first party has thus a (secret) "translation table" for all possible values for all wires:

wire	value	encoded – value
<i>W</i> ₁	0	e_1^0
<i>W</i> ₁	1	e ₁ ¹
W ₂	0	e_2^0
W ₂	1	e_2^1

Figure: Table: Encrypted Wire Values for all wires and all possible values

W ₅	<i>W</i> ₆	<i>W</i> ₇
e_{5}^{0}	e_6^0	e_7^0
e_{5}^{0}	e_6^1	e ₇ ¹
e_{5}^{1}	e_6^0	e_7^1
e_5^1	e_6^1	e ₇ ¹

(a) Gate G_3 using encrypted wires $W_7 = W_5 \lor W_6$

garbled gate	
$h(e_5^1 e_6^0 g_3) \oplus e_7^1$	
$h(e_5^0 e_6^0 g_3) \oplus e_7^0$	
$h(e_5^0 e_6^1 g_3) \oplus e_7^1$	
$h(e_5^1 e_6^1 g_3) \oplus e_7^1$	

(b) Garbled G_3 ($w_7 = w_5 \lor w_6$)

Figure: Garbled Computation table for G₃

WS 18-19

Adv

What is a garbled circuit?

It is a circuit, like one in cleartext:

- contains wires and gates
- contains tables representing the gates
 - but those tables are not "truth tables" (cleartext)
 - they are "Garbled Computation Tables" as in the previous slide
 - (rows have the form, say: $h(e_5^0||e_6^0||g_3) \oplus e_7^0$)

How can you calculate a garbled circuit?

As for a normal circuit, you calculate each gate at a time in sequence

but you work with garbled wire values, not with Booleans

Given, as input, the garbled wire values of a garbled gate

- ▶ In our example, given for instance e_5^0 , e_6^1
- It is easy to calculate $h(e_5^0||e_6^1||g_3)$

There is only one problem:

- the party who is calculating the garbled gate g₃
 - ▶ has some "strange" values as inputs, say e_5^0 and e_6^1
 - but they are just some random looking numbers
 - he does not know that they are e_5^0 and e_6^1
 - ▶ they could be e_5^1 and e_6^0 (or any of the 4 combinations)
- ▶ thus, he does not know if he "is" in the row $h(e_5^0||e_6^1||g_3) \oplus e_7^1$
 - or in another row, say $h(e_5^1||e_6^1||g_3) \oplus e_7^1$
 - if he uses this row, he gets an incorrect answer for the garbled value of w₇
- You need some redundancy / markers / signals (see class)

mEnc OT DC MPC ZKP

Concepts: Non-transferable Proof; Interactive protocol

An interactive protocol

Between 2 or more parties,

requires both to be on-line simultaneously

Encrypting or signing a message is (typically) non-interactive:

- Say in secure email the sender is not necessarily on-line
 - when the email message is decrypted or the signature is verified

Challange.response or ZKP (like Schnorr, see below)

are typically interactive

omEnc OT DC MPC ZKP

Concepts: Non-transferable Proof; Interactive protocol

A proof is "non-transferrable"

If it convinces "me" (the verifier)

- but the proof, no matter how I record it
 - will not convince other people
 - because it is easy for me to fake such proofs

It may be generated in

- an interactive or
- non-interactive protocol

Concepts: Non-transferable Proof: Interactive protocol

- Example: a MAC (message authn code) is produced in
 - a non-interactive protocol
- the proof is non-transferrable
 - although it convinces me that it was generated
 - by the only other entity that knows the key

Example

Key agreement is (typically) interactive

- but it is not a proof
 - you may have key agreements based on shared keys
 - or non-authenticated key agreements

$\stackrel{?}{=}$ Interactive Zero-Knowledge Proofs

- An interactive proof
 - transfers the conviction to the verifier
 - that the claimed statement is true
 - but does not leak any further information
 - in particular, it does not create a transferable proof
 - that could convince anybody else
- The interactive proof is zero-knowledge
 - if the "transcript" of the proof
 - could have been constructed by anybody
- We say: anybody could simulate any protocol transcript
 - without interacting with the prover
- Of course, the transcript of the conversation
 - is not convincing for any other party

- Given a "public number" z
 - s.t there is a "secret number" x
 - in a particular relation to z: R(x, z)
- Suppose P can be identified as the only entity
 - who knows the secret x
- We want a method that allows P to
 - prove that he knows the secret x
 - without disclosing anything about x
 - except that R(x, z)
- Example: Given
 - a group $G = \langle g \rangle$, of order p,
 - a generator q and
 - $ightharpoonup z \in G$ (say, the token of P)
- P claims that he knows the secret x with $z = g^x$
- A simple proof of this knowledge is Schnorr's identification scheme

Schnorr's identification scheme

- P claims to know x s.t $g^x = z$
- P chooses randomly k

$$P \xrightarrow{t=g^{k}} V$$

$$P \xleftarrow{c} V$$

$$P \xrightarrow{r=cx+k} V$$

- ightharpoonup V accepts if $g^r = tz^c$
- If P knows the secret x
 - ► Then: $g^x = z$, r = cx + k, and $t = g^k$
 - $\Rightarrow g^r = g^k g^{cx} = t(g^x)^c = tz^c$
 - and therefore V accepts

Properties of Schnorr's identification scheme

- Schnorr's identification scheme has 3 key properties:
- The proof presented to V
 - cannot be used offline to demonstrate to anybody
 - that P (or anyone) knows the secret x:
 - in fact anybody could present a transcript
 - simulating having carried out a successful exchange
- It is secure
 - If V runs the protocol correctly
 - and P does not know the secret x
 - Then the probability that
 - P is able to answer the challenge c (message 2) correctly
 - is negligible
- The protocol discloses
 - absolutely no information about the secret
 - ▶ to V
 - nor to anybody else

- A subset G of the group \widehat{G} is a *subgroup* of \widehat{G}
 - written as $G \leq \widehat{G}$ iff G is itself a group with respect to the operation of \widehat{G}

Lagrange's Theorem: H subgroup of $G \Rightarrow |H| \mid |G|$

- ▶ Proof: Let G be a group
 - ▶ *H* be a subgroup of *G*. For each $x \in G$ consider

$$xH := \{x \circ h \mid h \in H\}$$

- We claim that the sets xH are all of the size of H and form a partition of G
 - It follows immediately that the size of H divides the size of G

Lagrange's Theorem: H subgroup of $G \Rightarrow |H| \mid |G|$

- Two observations:
- For x, y ∈ G either xH and yH are equal or disjoint:
 - ▶ If $xH \cap yH \neq \emptyset$ then there are $h_1, h_2 \in H$ such that
 - ▶ $x \circ h_1 = y \circ h_2$ and thus for any $h \in H$ it follows
 - $x \circ h = y \circ h_2 \circ h_1^{-1} \circ h \in yH$
 - ▶ Thus $xH \subseteq yH$ and by symmetry xH = yH
- The function

$$(x \circ \cdot) : H \to xH,$$

 $h \mapsto x \circ h$

- ▶ is 1-1 $(x \circ h_1 = x \circ h_2 \Rightarrow h_1 = h_2$
- cancelling x) and onto (by definition of xH)

Exercise on Lagrange's Theorem

- Let G be a group
 - H be a subgroup of G
 - ▶ $x \in G$ and $xH := \{x \cdot h \mid h \in H\}$ as before
- ▶ For every $x, y \in G$ let
 - \rightarrow $x \sim y :\Leftrightarrow xH = yH$
 - $x \sim y \Leftrightarrow x^{-1}y \in H$
- ightharpoonup is an equivalence relation and the equivalence classes are precisely the sets xH
 - Exercise: In the particular case of $G = (\mathbb{Z}, +)$ and $H = n\mathbb{Z}$ the subgroup of multiples of n
 - ▶ calculate \sim and G/\sim

- Starting from any element g in any group \widehat{G}
 - ightharpoonup consider the set of all powers of $g \in \widehat{G}$
- ▶ This is a subgroup of \widehat{G} :
- lacktriangleright it is denoted $\langle g \rangle$ and called the *subgroup generated by g*
- Note that this group $\langle g \rangle$ is always commutative
 - even if \widehat{G} is not

Subgroups, Cyclic Groups, Order of elements

- ▶ If $\langle g \rangle$ is finite
 - its size is called the order of g (and the order of the subgroup $\langle g \rangle$)
- ► Thus ord(g) = ord($\langle g \rangle$) = $|\langle g \rangle|$ = min{i | $g^i = e$ }
- A group G is cyclic if it has an element g s.th
- $ightharpoonup G = \langle g \rangle$
- Any finite cyclic group of order n is therefore of the form:
- ► G = $\{e, \underline{g}, \underline{g \circ g}, \underline{g \circ g \circ g}, \dots, \underline{g \circ g \circ g \circ g \circ \dots} \circ \underline{g} \ (n-1 \ \text{times})\}$
- $= \{e, g, g^2, g^3, \ldots, g^3, \ldots$
- Notice that any two cyclic groups of the same order are isomorphic
- In particular any cyclic groups is isomorphic to some "simple group" of the form $(\mathbb{Z}_n, +_n)$ (next slide)

A "simple" group

- ▶ $\mathbb{Z}_n = \{0, 1, 2, 3, \dots n-1\}$ with $+_n$ the sum modulo n as operation is a group for each $n \in \mathbb{N}$
- The size of the group is n
- This is an example of a "simple group" that is a group where all interesting operations are easy to evaluate – but
 - as we will see
 - it is isomorphic to some complex groups where corresponding operations may be quite difficult
- ▶ It may sound strange that operations in one group G₁ are simple and the "same" operations in an isomorphic group G₂ are difficult
- but it is possible that in one direction the isomorphism
- ▶ $G_1 \rightarrow G_2$ is easy to calculate (say, using exponentiation)
 - while the reverse isomorphism $G_2 \to G_1$ may be difficult or even infeasible to calculate (requiring the computation of a discrete logarithm)

Examples of Groups

- The following are groups:
- $ightharpoonup \mathbb{Z}_p^*$: for some prime p
 - is the set of elements
 - $\{1, 2, 3, \dots p-1\}$ under the operation multiplication The size of the group is p-1
- ▶ \mathbb{Z}_7 : consists of $\{1, 2, 3, 4, 5, 6\}$. For instance
 - ▶ $5 * 5 \equiv_7 25 equiv_7 4$
 - The inverse can be derived similarly
 - ▶ for instance 3^{-1} is represented by 5 since $3 * 5 \equiv_7 15 \equiv_7 1$
- ► $G = \{1, 2, 4\}$ is a group under the operation multiplication modulo 7
- ► $G = \{1, 2, 4, 6\}$ is not a group under the operation multiplication modulo 7 because it does not obey the closure property:
 - ▶ 2 * 6(mod 7) ∉ *G*
- Elliptic Curve groups

For $a \in \mathbb{Z}_n^*$, let the order of a be:

$$\operatorname{ord}_{\mathbb{Z}_n^*}(a) := \min\{k \mid a^k \equiv_n 1\}$$

Fermat's Theorem, Euler's Theorem

- ▶ Defs (recall): Order, generator
 - ▶ If *G* is finite, then
 - $\langle g \rangle := \{ g^i : i \in \mathbb{Z} \}$
 - ▶ is also finite; the size is
- $|\langle g \rangle| = \operatorname{order}(g) := \min_i \{g^i = 1\}$
- ► Thus $\langle g \rangle = \{1, g, g^2, g^3, \dots, g^{\text{order}(g)-1}\}$
- ▶ An element $g \in G$ is called a *generator* of G if
- \triangleright $\langle g \rangle$ = G or equivalently, the order of g is |G|

Fermat's Theorem, Euler's Theorem

- Euler's Theorem
 - ▶ The order of every element $g \in G$ divides |G|
 - This follows from Lagrange's Theorem, since the size of the subgroup
 - $\langle g \rangle$ must divide the size of the group
- A simple consequence is:
 - Fermat's Theorem For every prime p and $g \in \mathbb{N}$,
 - $p = q^{p-1} = 1 \pmod{p}$

Application: generating random primes

- Suppose we want to generate a large random prime p of length 1024 bits (i.e. $p \approx 2^{1024}$)
- ► Choose a random integer $p \in [2^{1024}, 2^{1025} 1]$
- ► Test if $2^{p-1} = 1$ in \mathbb{Z}_p
 - ▶ If yes, done
 - ▶ If not, try another *p*
- ▶ This is a simple algorithm, but not the best

 $Pr[p \text{ passes the test but is not prime}] < 2^{-60}$