Crypto for PETs — Part 3

Jorge Cuellar

Q>
o PETe Pt

Processing data securely in the Cloud

Assume that a "client" is working in a cloud ("server")

» and some data fields are numbers (sensitive values)
> say, amounts of money in Euro
» they must be maintained encrypted

> so that the cloud provider (the server) or any other in the cloud
> is not able to read the cleartext

But the client wants to process the data in the cloud
» That means: upload a program to the could,

» do the arithmetic processing there
» fetch back the data

» and — only then — decrypt it

Is it possible to "calculate with encrypted data"?

Homomorphic Encryption

allows

» addition and/or multiplication
» to be carried out on the encrypted values

» when the result is decrypted, it yields the same result
> as the same calculation on the unencrypted inputs:

> D(E(vy) 0 E(v2)) = (v4 0 v2)
In other words,

> (&(wvy) 0 &(wv2)) is one encryption of (v4 o va)

> is ongoing research

Recall: RSA with public parametern=p - q

P, q: two random secret primes

» d: the public key is a random number: 1 < d < n—1

> e: the private key is a number with: d - e =(p_1)g—1) 1
Message m is encrypted as
> &(m)=m°f €7}
and ¢ = &(m) is decrypted via
» D(c):=c? € Z

Homomorphic Encryption

If you encrypt two numbers separately,
» using the same secret key,

» multiply the ciphertexts, then decrypt the result,
» you get the same result that you would get

» if you multiplied the two original numbers

But RSA is not homomorphic for addition

£ DA
Jorge Cuslar Crypo for PETs —Part 3

5

Homomorphic Encryption

RSA is multiplicative homomorphic:
> &(m) - E(m2) = E(my - my)

Given
> ¢ =8&(m;) = mf mod N
Cq = m$ modN
Co = m§ modN
ci-Cc = mi-m; modN
= (my-mp)® modN

u]

]

I

w

i
K
»

Q

Homomorphic encryption for Aggregation

Homomorphic cryptosystems are used to create aggregated data
» calculate some statistics (averages, sums, etc) on personal data

» that hide (in some cases) the values of the sensitive personal data
Homomorphic encryption can be used

» for example secure voting systems

» for private information retrieval schemes
» and many more

El Gamal Encryption

Public parameters:

» G, agroup,

S
» |G, the order of the group,

» g, a generator of G
The public key is

PK=gpk

PK* - m

EG
» PK = gP* € G for some secret private key pk € {1,..
To encrypt a message m € G,

|Gl =1}
» generate arandom x € {1,...,|G|}
> &(m) = (g, PK* - m)

5
i

El Gamal is a homomorphic encryption
Given encryptions

> &E(m) = (", PKX - m)
> &(mg) = (g%, PK* - mp)

Then the pointwise product of those two encrypted messages
> &(my) - E(mp) =

> (9", PK*) - (g, PK* - mp) =
> (g¥ - g%, PKY - my - PK* - mp)

» is an encryption of the product (my) - (mo)
Proof:

» If we multiply two messages componentwise, we get

(6", PKX-my)-(g*%, PK*-mp) = ("%, PK*'*™2.my-my) = (g, PK*-(my-mz))
El Gamal is homomorphic with respect to multiplication

Oblivious Transfer

An oblivious transfer protocol (OT)
» is a type of query-response protocol

The "client" or "receiver" asks for a piece of information
» say: an entry of a DB

The "server" or "sender" responds with the information
» or with nothing

» BUT: he remains oblivious (= unaware, unconscious) about
> the content of the query

> what piece (if any) has been transferred
In some variants of OT

» itis not a query-response protocol
» simply a "send" protocol

» where a sender transfers one of

ws 1819

» piece of information to a receiver out of a set
> without knowing which one

= E £ DA
Jorge Cusllr Cryptofor PET—Parts 10

1-2 Oblivious Transfer

Recall first D-H:

» Achooses a < Zp, A = g%

» Bchooses b < Zp, B = g°

A—24 B
A—2 B
A e Ex(m) B
Where Ej is encryption with the key k known to both: k = B? = AP

» Observe that Alice can also derive
» B2=(5)°

> but Bob cannot compute it this group element (assuming CDH)

1-2 Oblivious Transfer

Consider the following D-H variant:
» Achooses a < Zp, A= g?

» Bchooses b < Zp, B = g°

A—2 B
2 B=AB B
A—CED g
Where Ej is encryption with the key k known to both
> k=(B)7 = (4B)2 - pb

DA

Oblivious Transfer

» A has two messages mg, nmy

» B wants message i
> As above

» Achooses a < Z,, A= g?
» Bchooses b < Zp, B = g°

Depending on i, in the second message, B either sends
» B=Bifc=0or
» B=ABifc=1
Now A calculates both
> ko = (B)?
> K

= (8)a

and sends both ey < Ey,(mp) and eq < E, (my)

Threshold Decryption and Threshold Signatures

» A threshold public key encryption system is a
» public key system where the private key is

> distributed among n decryption servers so that

> at least k servers are needed for decryption
» In a threshold encryption system an entity
» called the combiner
> has a ciphertext c that it wishes to decrypt
» The combiner sends c to the decryption servers
» and receives partial decryption shares

> from at least k out of the n decryption servers
» |t then combines these k partial decryptions
> into a complete decryption of ¢

» |deally, there is no other interaction in the system

» namely the servers need not talk to each other during decryption
» Such threshold systems are called non-interactiv

e

=

Dining cryptographers

» David Chaum proposed 1988 the Dining cryptographers
> showing it is possible to send anonymous messages with
> unconditional sender and recipient untraceability
» Cryptographers A; fori=1,2,...,naround a table for dinner
> A; has a secret s;
» Collectively they want to calculate

> S1PDSHD...BS... DSy
> E;s,(mod2)

ws 1819

Dining cryptographers, "Toy Use Case":

» The waiter informs them that the meal
» has been paid for by someone

> who could be one of the cryptographers or their boss
» The cryptographers respect each other’s right to
» make an anonymous payment

> but want to find out whether the boss paid
> (The boss has no privacy right here)

Jorge Cular

£ DA

Cryplo for PETs —Part 3

16

Dining cryptographers

» Notice that each cryptographer has a secret s;
» which is 1 if he paid for the meal and 0 else

» So they decide to execute a two-stage protocol
» In the first phase

» Each two cryptographers A;, A;, sitting next to each other
> establish a shared random one-bit secret b;,j.1
> so that only those two cryptographers know the outcome
» Example with 3 cryptographers:
> Ay, A2 share secret by 2 = 1
> Ay, As share b3 =0
> A3,A1 share b3,4 =1

=] F = E £ DA

Jorge Cuellar Cryplo for PETs —Part3 17

Dining cryptographers: one solution

» Now each cryptographer
» publicly announces the bit
> 8 =5 D bii—1 D b

> wherei—1,i+1aremodn
Then X;s; = X;a;, because in the second sum
» each of the numbers b; ;¢ appears twice (in a; and in g;.1)
» and therefore cancel out
Thus the sum X;a; reveals if one of the s; is one

» That is, one of the cryptographers paid

Dining cryptographers: one solution

» In other words
> if A; didn’t pay for the meal
> he shows the xor of
> the two shared bits he holds with his neighbours
» if he did pay for the meal
> the opposite of that xor

» In the example (above)

» if none of the cryptographers paid, then
> A; would announce by =010 =1,
> A would announce b, =0 & 14 1 =0, and
> Az would announce bs =04 0H 1 =1

» On the other hand

» if Ay paid, he would announce
> b=1®d1H1=1

=] F = E £ DA
ws 18.19

Jorge Cuellar Cryplo for PETs —Part3 19

Dining cryptographers: one solution

» Notice that the xor of
» all the announced bits b; is 0
> iff none of the cryptographers paid
> so the boss must have paid
» Otherwise if the xor of
» all the announced bits b; is 1

> then one of the cryptographers paid
> but his identity remains unknown

> to anybody, including the other cryptographers
» Anonymous communication networks
» based on this problem are often known as DC-nets

=] F = E £ DA

Jorge Cuellar Cryplo for PETs —Part3 20

Secure Multi-Party Computations

Assume n parties Py, ..., P,
» each one in possession of a (secret) value x;
The parties want to calculate a set of functions
> f(X)=F(X1, .., Xn), .o Ba(Xy, . Xp, D) With r < 9
» over their data, (x1,..., Xn),
> plus perhaps a (common) random input r, with:

» Party P; should learn the result fi(xy, ..., xn, r) and
> should learn nothing else

> No external to the protocol (eavesdropper)
» should learn anything

» This should hold even
» if an arbitrary subset of the parties maliciously deviates from the
protocol

= ar

Jorge Cuelar Cryplofor PETs—Part 21

O
J

I
U]

Secure Multi-Party Computations

This can be easily done if the parties have

» direct, unrestricted and secure access to an
» "angelic" trusted third party (T3P)

Then: each party P; sends the input x; to the T3P
» over an ideal secure channel

> no one can read or modify this value
The T3P computes y1 = fi(x1,...,Xn, 1)

> sends y; to P;

s Yn= fn(X‘l)
> (over the secure channel)

~7Xn7r)

O» «Fr»«=r«E>» =
aociot

= DaAe

Cryplo for PETs —Part3 22

Secure Multi-Party Computations

» but not relying on a third party

» but rather only on cryptographical methods
running 7 emulates
» an ideal process where
» all parties secretly provide inputs to an trusted party
» and any "harm" done by a ppt adversary
> in the real execution ofr

Secure multi-party computations do the same thing

» which computes f and returns the outputs to the parties
» could have been done by

> a pptin the ideal process

Secure Multi-Party Computations

» The T3P solution provides not only security against individual
cheaters
> also ensures security if several parties are colluding throughout
the entire execution
> |If some set B of parties collude

» then the parties in that set learn the union of what they each learn
individually

» but nothing more

» The solution using a trusted party is "the best one could hope for"
> (if the T3P is really trustworthy)

» and we will therefore take this as our "ideal world"

» |n the real world, in contrast

» there may not exist any trusted parties that all the players agree
upon

Secure Multi-Party Computations

» Protocols for secure computation should provide a way for
» Py,..., P,to achieve the security guarantees of the ideal world
without the T3P
» Roughly speaking
> a protocol is "secure" if the actions of any colluding parties in the

real world can be emulated by those same parties in the ideal
world

| 4

But let us generalize the model a bit by introducing randomicity
and introducing a "don’t care" notion

=] F = E £ DA

Jorge Cuelar Cryplo for PETs—Part3 25

Secure Multi-Party Computations

» The concept of Secure Multi-Party Computation generalizes
» confidentiality and integrity of data
Describe the problem of
» secure (confidentiality and integrity protected) communication
> from P; to P»
as a MPC problem of computing the function f;(x7) = x»

Jorge Cular

£ DA
Copolor PETs—Pats 26

Recall we have n parties

Secure Multi-Party Computations

They want to calculate
> f1 (X1)

» each one in possession of a (secret) value x;

'7Xn7r) "'afn(X‘la

ce Xp,) Withr < 9
> (with some additional random input r)
» and party / gets exactly the result of f;
(f1(X17X27 ©00 axmr)a' . '7fn(X17X27' o 7Xn:r))
» F is the function that
> takes all the inputs from all parties and
» calculates all the outputs for them
> (Remark: F is non-deterministic, while each f; is)

[m]

= =

Jorge Cular

£ DA
Copolor PETs —Pats 27

Secure Multi-Party Computations

> very general and
> very strong

» The concept of Secure Multi-Party Computation is
> F(Xxqi,...,Xp) = Xy + ... + X, @ simple sum function
» where all parties get the same value
> F(x1,...,Xn) = MAX(xq, ..
> F(—,...

., Xp) @ max-value function
,—) = r < 9% a simple coin toss function
spite of any malicious behavior

» Here the main requirement is that the output remains unbiased in

Secure Multi-Party Computations

soundness)

> F((x0, x1), b) = (—, Xp(b < {0, 1}))
» This is 1-of-2 oblivious transfer:
» Party 2 learns one of two values that party 1 had
» and party 1 doesn’t know which value party 2 learned
> FR((Xa W)7 _) =
relation

(—, (x, R(x, w))) where R(x, w) is a binary

» This is a modelling of Zero-Knowledge (we have correctness and
» This is also a proof of knowledge of a witness

Jorge Cular

£ DA
Copolor PETs —Parts 29

MPC Yao’s Garbled Circuits

Assume parties P1 and P, share a Boolean Circuit f, for f = (f, f2)

» With inputs /; that will be provided by P1 and
> ip to be provided by P2

This circuit is in "cleartext":

» It has a finite number of wires wy, wo, . .. and gates g1, go

» Each gate g; is given by a "truth table" on three wires
> In a moment we will explain

» how wires and gates can be "garbled",

> constructing a "garbled circuit"
» how to evaluate a "garbled circuit":

> given garbled wire values

> how to calculate the garbled output wire

The high-level view of Yao’s construction is given in the next slide

MPC Yao’s Garbled Circuits, Overview

1. P1 garbles each wire and each gate of the clear-text circuit f,
» except the output bits of %
» creating garbled circuit f,

2. P1 sends fy and the garbled values for his inputs /

3. P2 uses OT to get the garbled values of his inputs i in fy
4. P2 calculates f, with the garbled versions of iy and i

» obtains his output f; and sends to P1 the garbled values for £,

o F = E =

Jorge Cular

DA

Cryplo for PETs—Part3 31

MPC A Circuit in Cleartext
W1 — G1 W5
Wo —
DX
W3 — Gg
Wy — We

Where the gates are given by tables, i.e for G3 (an or-gate):

- Oo|l=|O
—_| - | -] O

Figure: Gate Gs: w7 = ws V wg in cleartext

o F

DA
13

Garbling the wires

For each wire number w := 1,2, 3, ... and possible value on the wire
(v:=0,1)

» choose a random number called the "random encoding" e},
» Thus e} encodes the fact that "wire 5 has value 1"

The first party has thus a (secret) "translation table" for all possible
values for all wires:

wire | value | encoded — value

Wy 0 e?
4] 1 e}
Wo 0 eg
Wo 1 e;

Figure: Table: Encrypted Wire Values for all wires and all possible values

Garbling a Circuit

ws | we || wy garbled gate
e | e || & h(es|legl|gs) & €;
e | & | & h(eg|led]|gs) © €7
e | e | e h(eg]|es|lgs) @ 6‘7
e | e | e hiet||egl|gs) © e
(a) Gate G; using (b) Garbled G;
encrypted wires (wy = ws V W)
wr = ws V We

Figure: Garbled Computation table for Gz

(=] = = = Q@

ws 1819
Jorge Cular Cryplo for PETs —Part3 34

Calculating a Garbled Circuit

It is a circuit, like one in cleartext:

» contains wires and gates
» contains tables representing the gates

> but those tables are not "truth tables" (cleartext)
» they are "Garbled Computation Tables" as in the previous slide

> (rows have the form, say: h(e2||ed]|gs) @ €9)

As for a normal circuit, you calculate each gate at a time in sequence

» but you work with garbled wire values, not with Booleans
Given, as input, the garbled wire values of a garbled gate
» In our example, given for instance €2, e
» Itis easy to calculate h(el||ed||gs) Hac

Joge Cuellar Cryplofor PETs —Part3 35

ws 1819

Calculating a Garbled Circuit

There is only one problem:

» the party who is calculating the garbled gate g5
> has some "strange” values as inputs, say &2 and e

> but they are just some random looking numbers
» he does not know that they are €2 and e

» they could be e} and & (or any of the 4 combinations)

» thus, he does not know if he "is" in the row h(ed||et||gs) ®
> orin another row, say h(el||el||gs) ® e}

value of wy

> if he uses this row, he gets an incorrect answer for the garbled

» You need some redundancy / markers / signals (see class)

Jorge Cular

Cryplo for PETs —Part 3

ol

DA

E

Concepts: Non-transferable Proof; Interactive protocol

Between 2 or more parties,

> requires both to be on-line simultaneously

Encrypting or signing a message is (typically) non-interactive:
» Say in secure email the sender is not necessarily on-line

» when the email message is decrypted or the signature is verified
Challange.response or ZKP (like Schnorr, see below)
» are typically interactive

[m] =l = =

Jorge Cular

= DaAe

Cryplo for PETs —Part3 37

Concepts: Non-transferable Proof; Interactive protocol

If it convinces "me" (the verifier)
» but the proof, no matter how | record it

» will not convince other people
> because it is easy for me to fake such proofs

It may be generated in
> an interactive or

» non-interactive protocol

o F

Jorge Cular

£ DA

Cryplo for PETs—Part3 38

Concepts: Non-transferable Proof; Interactive protocol

» Example: a MAC (message authn code) is produced in
> a non-interactive protocol

» the proof is non-transferrable

» although it convinces me that it was generated

> by the only other entity that knows the key

Key agreement is (typically) interactive
» but it is not a proof

> you may have key agreements based on shared keys
> or non-authenticated key agreements

Jorge Cular

= DaAe

Cryplo for PETs —Part3 39

Interactive Zero-Knowledge Proofs

An interactive proof
» transfers the conviction to the verifier
> that the claimed statement is true
» but does not leak any further information

> in particular, it does not create a transferable proof
> that could convince anybody else

v

v

The interactive proof is zero-knowledge
» if the "transcript" of the proof
> could have been constructed by anybody

v

We say: anybody could simulate any protocol transcript
» without interacting with the prover

v

Of course, the transcript of the conversation
» is not convincing for any other party

=] F = E £ DA

Jorge Cuellar Cryplo for PETs —Part3 40

ws 1819

Proof of knowledge / proof of possession
» Given a "public number" z

» s.tthere is a "secret number" x
> in a particular relation to z: R(x, z)

» Suppose P can be identified as the only entity
» who knows the secret x

» We want a method that allows P to
» prove that he knows the secret x
» without disclosing anything about x
> except that R(x, z)
» Example: Given
» agroup G = {(g), of order p,
> agenerator g and

» z € @G (say, the token of P)

scheme

> P claims that he knows the secret x with z = g*
» A simple proof of this knowledge is Schnorr’s identification

Schnorr’s identification scheme

> Pclaimsto know x st g* =z

» P chooses randomly k

t=g*
pP———V
Pe——V
P r=cx+k v
» V accepts if g" = tz°€
» If P knows the secret x

» Then: g¥ =z, r=cx+k,and t = g~
> =9 =9 g™ =1(g")° =tz°

> and therefore V accepts

Jorge Cular

DA

Cryplo for PETs —Part3 42

Properties of Schnorr’s identification scheme

>

v

v

v

ws 1819

Schnorr’s identification scheme has 3 key properties:
The proof presented to V
» cannot be used offline to demonstrate to anybody
> that P (or anyone) knows the secret x:
» in fact anybody could present a transcript
> simulating having carried out a successful exchange

It is secure
» If V runs the protocol correctly
> and P does not know the secret x
» Then the probability that
> P is able to answer the challenge ¢ (message 2) correctly
> is negligible
The protocol discloses
» absolutely no information about the secret
> toV

> nor to anybody else
[m] = -

Jorge Cuelar

E £ DA

Cryplo for PETs —Part 3

a3

Subgroups

» A subset G of the group Gisa subgroup of G

> written as G < Giff Gis itself a group with respect to the
operation of G

DA

Cryplo for PETs —Part3 44

Lagrange’s Theorem: H subgroup of G = |H| | |G

» Proof: Let G be a group
> H be a subgroup of G. For each x € G consider
xH :={xoh|he H}

» We claim that the sets xH are all of the size of H and form a
partition of G

» |t follows immediately that the size of H divides the size of G

DA
Jorge Guelar

Cryplo for PETs —Part 3

a5

» Two observations:

Lagrange’s Theorem: H subgroup of G = |H| | |G

» For x,y € G either xH and yH are equal or disjoint
» If xH N yH # @ then there are hy, h, € H such that
> x o hy =y o hy and thus for any h € H it follows
> xoh=yoh20hr'oh€yH

» Thus xH C yH and by symmetry xH = yH
» The function

(xo:):H— xH,

h— xoh
> is1-1 (X0h1=XOh2$h1=h2

» cancelling x) and onto (by definition of xH)

Jorge Cular

= DaAe

Cryplo for PETs —Part3 46

Exercise on Lagrange’s Theorem

» Let G be a group
» H be a subgroup of G

» x € Gand xH := {x - h| h € H} as before
» Forevery x,y € Glet

> X~y xH=yH
» x~y&ox'lyeH

> ~ is an equivalence relation and the equivalence classes are
precisely the sets xH

» Exercise: In the particular case of G = (Z, +) and H = n’Z the
subgroup of multiples of n
> calculate ~ and G/ ~

Cyclic Groups

» Starting from any element g in any group G

» consider the set of all powers of g € G
» This is a subgroup of G:

» itis denoted (g) and called the subgroup generated by g

» Note that this group (g) is always commutative
» evenif Gis not

[m]

=

Jorge Cular

DA

Cryplo for PETs —Part3 48

Subgroups, Cyclic Groups, Order of elements

vV vVv.v vy

If (g) is finite
> its size is called the order of g (and the order of the subgroup (g))
Thus ord(g) = ord((g)) = |[(g)| = min{i | g’ = e}
A group Gis cyclic if it has an element g s.th
G=(9)
Any finite cyclic group of order n is therefore of the form:
G -

{e, g ,g0g9,g0gog,...,gogogogo...og(n—1times)}
N~ e ——

={ea g, g2) g3 PRI gn_1 }

Notice that any two cyclic groups of the same order are

isomorphic

In particular any cyclic groups is isomorphic to some "simple
group" of the form (Z,, +,) (next slide)

o F

A "simple" group

» Zn=140,1,2,3,...n— 1} with +, the sum modulo n as operation
is a group foreachn € N

» The size of the group is n
» This is an example of a "simple group" — that is a group where all
interesting operations are easy to evaluate — but
> as we will see
» it is isomorphic to some complex groups where corresponding
operations may be quite difficult
» It may sound strange that operations in one group Gy are simple
and the "same" operations in an isomorphic group G, are difficult
» but it is possible that in one direction the isomorphism
» Gy — G is easy to calculate (say, using exponentiation)

» while the reverse isomorphism G, — Gy may be difficult or even

infeasible to calculate (requiring the computation of a discrete
logarithm)

Examples of Groups

v

The following are groups:
Zy: for some prime p
> is the set of elements
> {1,2,3,...p— 1} under the operation multiplication The size of
the group is p — 1
Z7: consists of {1,2,3,4,5,6}. For instance
» 5x5 =, 25equivy4
> The inverse can be derived similarly
» for instance 37" is represented by 5 since 3 x5 =7 15 =5 1

v

v

v

G = {1,2,4} is a group under the operation multiplication modulo
7

G ={1,2,4,6} is not a group under the operation multiplication
modulo 7 because it does not obey the closure property:
> 2x6(mod 7) ¢ G

Elliptic Curve groups

v

v

ws 1818

» For a € Z}, let the order of a be

ordz:(a) := min{k | & =, 1}

Jorge Cuellar Crypto for PETs — Part 3

DA

52

Fermat’s Theorem, Euler’s Theorem

| 4

Defs (recall): Order, generator
» |If Gis finite, then
> (g9)={¢:ieZ}
> s also finite; the size is

v

|(g)| = order(g) := min;{g’ = 1}

Thus (g) = {1,9,9%, 6%, ..., g"%@~"}

An element g € G is called a generator of G if
(g) = G or equivalently, the order of g is |G|

v

v

v

u]
]
1
ul
it

DA

Fermat’s Theorem, Euler’s Theorem

» Euler’s Theorem

» This follows from Lagrange’s Theorem, since the size of the
subgroup

> (g) must divide the size of the group
» A simple consequence is:

> The order of every element g € G divides |G|

> Fermat's Theorem For every prime pand g € N,
> ¢° =1 (mod p)

Jorge Cular

Cryplo for PETs —Part 3

DA

54

Application: generating random primes

» Suppose we want to generate a large random prime p of length

1024 bits (i.e. p ~ 21024
» Choose a random integer p € [219%4 21025 _ 1]
» Testif2°~' = 1inZ,
» If yes, done
> If not, try another p

» This is a simple algorithm, but not the best

Pr{p passes the test but is not prime] <

[m]

2—60

=

Jorge Cular

£ DA

Cryplo for PETs —Part3 55

	HomEnc
	OT
	DC
	MPC
	ZKP
	Adv

