Vorlesung: 35780 Advanced Data Analytics - Details

Vorlesung: 35780 Advanced Data Analytics - Details

Sie sind nicht in Stud.IP angemeldet.

Allgemeine Informationen

Veranstaltungsname Vorlesung: 35780 Advanced Data Analytics
Untertitel
Veranstaltungsnummer 35780
Semester WiSe 22/23
Aktuelle Anzahl der Teilnehmenden 54
Heimat-Einrichtung Lehrstuhl für Statistik und Data Analytics
beteiligte Einrichtungen Lehreinheit für Computergestützte Statistik und Mathematik
Veranstaltungstyp Vorlesung in der Kategorie Lehre (mit Prüfung)
Erster Termin Dienstag, 18.10.2022 12:00 - 13:30 Uhr, Ort: (WIWI) SR 028 (HA)
Art/Form
Voraussetzungen
Basic understanding of calculus and matrix algebra, introductory statistics including inferential methods, regression analysis, and testing methods. Basic knowledge of statistical software R is an advantage.
Lernorganisation
Interactive frontal teaching and discussion of the course content. Teaching of theoretical principles and illustration by examples in lecture and tutorial. Weekly (accessible) lecture and exercise materials and required literature. Some of the tutorials are hands-on using the open-source statistical software R. Students are explicitly invited to play an active role in lectures and tutorials through questions and input for discussions. Readings are essential to prepare the class and the exam.
Leistungsnachweis
Written exam or home performance assessment (60 minutes)
or oral (online) exam, 100%.
SWS
2
Qualifikationsziele
Students who have successfully completed the module are able to explain and reflect the main principles and key assumptions of the covered techniques. They are able to choose suitable and problem-adequate modeling approaches in the context of supervised learning and implement the approaches in the statistical software R. They can develop and evaluate predictive models for particular applications and interpret and critically assess the modeling results. They are able to discuss selected considerations regarding inference for predictive models and implement the approaches.
Workload
Lecture 2 SWS (28 h Contact hours and 28 h Self-study) and Tutorial 2 SWS (28 h Contact hours, 28 h Self-study). We are calculating with 15 semester weeks (Lecture, Tutorial, and Exam). Each SWS is included in the calculation with 60 minutes.
Sonstiges
Teaching language: English
ECTS-Punkte
5

Studienbereiche

Die Angaben zu den Anrechenbarkeiten an der FIM sind ohne Gewähr. Bitte beachten Sie die verbindliche Liste der Anrechenbarkeiten .

Modulzuordnungen

Kommentar/Beschreibung

This module covers key state of the art techniques in statistical learning/machine learning. The emphasis of the course is on techniques from supervised learning in the context of regression modeling. The following content is covered: Fundamental concepts (bias-variance trade-off, curse of dimensionality, flexibility vs. interpretability, resampling techniques), key building blocks (parametric polynomials, spline-regression, tree-based modeling), and frequently employed algorithms (lasso, backfitting, random forest, boosting). Prediction and inference are discussed. Selected applications are used to motivate the different algorithms.