Seminar: 39740 Doctoral Seminar "Recent Developments in Data Science" - Details

Seminar: 39740 Doctoral Seminar "Recent Developments in Data Science" - Details

Sie sind nicht in Stud.IP angemeldet.

Allgemeine Informationen

Veranstaltungsname Seminar: 39740 Doctoral Seminar "Recent Developments in Data Science"
Untertitel
Veranstaltungsnummer 39740
Semester SoSe 24
Aktuelle Anzahl der Teilnehmenden 5
Heimat-Einrichtung Lehrstuhl für Betriebswirtschaftslehre mit Schwerpunkt Management Science / Operations and Supply Chain Management
beteiligte Einrichtungen Lehreinheit für Computergestützte Statistik und Mathematik, Lehrstuhl für Betriebswirtschaftslehre mit Schwerpunkt Marketing und Services, Lehrstuhl für Business Decisions & Data Science, Lehrstuhl für Statistik und Data Analytics, Professur für Angewandtes Maschinelles Lernen
Veranstaltungstyp Seminar in der Kategorie Lehre (mit Prüfung)
Erster Termin Donnerstag, 02.05.2024 12:00 - 14:00 Uhr, Ort: (WIWI) SR 026
Art/Form Doktorandenseminar
Teilnehmende
Doctoral students
Voraussetzungen
An ongoing or a planned research project that involves quantitative methods, such as statistics, optimization, machine learning and/or artificial intelligence.
Lernorganisation
The seminar is an associated course with the brownbag seminar “Recent Developments in Data Science".
Leistungsnachweis
Doctoral students provide a detailed formal discussion of a scientific talk of the workshop, e.g. by assuming a role of the discussant or in a written review. In addition, unless otherwise specified by the lecturers, doctoral students should give a scientific talk as part of the intensive ideation workshop series of the brownbag seminar “Recent Developments in Data Science”.
The scope of the required assignments is specified by the lecturers in the beginning of the course. The lecturers can also introduce further assignments or substitute the assignments stated above.
Doctoral students receive a record of their achievements in the end of the course.
SWS
2
Literatur
Research articles, working papers, handout materials can be optionally distributed as supporting literature for the topics of workshop presentations.
Qualifikationsziele
The workshop introduces doctoral students to recent developments in the design and application of quantitative methods. It also assists doctoral students in the search for topics for own research by providing insights into open questions in the design of quantitative methods and their application in practice. Finally, doctoral students receive opportunities to get an intensive feedback on their ongoing or planned research.
Workload
1 SWS (15 h attendance and 45 h own work)
Calculation basis: 15 weeks in a semester, including an examination week; each SWS corresponds to 60 minutes.

Themen

Dietmar Bauer (University of Bielefeld): Using Subspace Algorithms for the Estimation of Linear State Space Models in the Context of Approximate Dynamic Factor Models, On the Instability of Deep Learning Models, On the Instability of Deep Learning Models (Florian Lemmerich), Markus Sinnl (University of Linz): Reviving an old formulation with a new idea: On solving the p-center problem via a projection-based approach, Alena Otto: Current Research, Prof. Mohan

Räume und Zeiten

(WIWI) SR 026
Donnerstag: 12:00 - 14:00, wöchentlich (9x)
(WIWI) SR 027
Donnerstag: 12:00 - 14:00, wöchentlich (1x)

Studienbereiche

Die Angaben zu den Anrechenbarkeiten an der FIM sind ohne Gewähr. Bitte beachten Sie die verbindliche Liste der Anrechenbarkeiten .

Kommentar/Beschreibung

Doctoral students attend the talks of the brownbag seminar “Recent Developments in Data Science”. To master the skills of a scientific discussion, they are assigned the roles of a moderator and of a discussant for selected guest talks and have to provide a short introductory tutorial on the overarching topic of the assigned guest talk.
Doctoral students are encouraged to make a presentation as part of the intensive ideation workshop accompanied by their working paper distributed as a handout in the run-up of the presentation.