Vorlesung: 39734 Advanced Topics in Management Science: Planning of Complex Interacting Systems - Details

Vorlesung: 39734 Advanced Topics in Management Science: Planning of Complex Interacting Systems - Details

Sie sind nicht in Stud.IP angemeldet.

Allgemeine Informationen

Veranstaltungsname Vorlesung: 39734 Advanced Topics in Management Science: Planning of Complex Interacting Systems
Untertitel
Veranstaltungsnummer 39734
Semester WiSe 22/23
Aktuelle Anzahl der Teilnehmenden 162
Heimat-Einrichtung Lehrstuhl für Betriebswirtschaftslehre mit Schwerpunkt Management Science / Operations and Supply Chain Management
Veranstaltungstyp Vorlesung in der Kategorie Lehre (mit Prüfung)
Erster Termin Montag, 17.10.2022 14:00 - 16:00 Uhr, Ort: (WIWI) HS 7
Art/Form
Teilnehmende
M.Sc.BA, M.Sc.WI, M.Sc.CMT, M.Sc.INF, M.Sc.AIE
Lernorganisation
• Block course with interactive elements and classroom discussions;
• Solution and discussions of exercises and case studies;
• Online forums and discussions;
• A take-home mock exam to simulate the final exam of the course. Discussion of this mock exam;
• Blended learning, such as usage of software examples, videos and web-based exercises
Leistungsnachweis
a) Final exam 100 % or
b) Final exam 90% + 10 % for completing optional assignments during the semester
(with reservations)
SWS
2
Literatur
Bertsekas, D. P., and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming. Athena Scientific: Massachustetts.
Bertsekas, D. P. Dynamic Programming and Optimal Control. Athena Scientific: Massachustetts.
Bertsekas, D. P. Dynamic Programming and Optimal Control: Approximate Dynamic Programming. Athena Scientific: Massachustetts.
Bertsekas, D. P. Abstract Dynamic Programming. Athena Scientific: Massachustetts. Powell, W. B. Approximate Dynamic Programming. John Wiley and Sons.
Qualifikationsziele
The main objective of the course is to impart insights into dynamic-programming-based approaches for complex nonlinear optimization problems (especially mixed-integer optimization problems), including online optimization, sequential decision making and stochastic optimization. Students will learn how to approach complexity by incorporating suitable approximation and simulation elements into the design of solution algorithms. The course facilitates critical appreciation of algorithms and algorithmic approaches, including neural networks and reinforcement learning. With help of numerical examples and case studies, the course will prepare students to apply the learned concepts in practice.
Workload
Lecture 2 SWS (30 h attendance and 45h own work)
Excercise 2 SWS (30 h attendance and 45 own work)
Calculation basis: 15 weeks in a semester, including an examination week; each SWS corresponds to 60 minutes
ECTS-Punkte
5

Räume und Zeiten

(WIWI) HS 7
Montag: 14:00 - 16:00, wöchentlich (15x)

Studienbereiche

Die Angaben zu den Anrechenbarkeiten an der FIM sind ohne Gewähr. Bitte beachten Sie die verbindliche Liste der Anrechenbarkeiten .

Modulzuordnungen

Kommentar/Beschreibung

  • Dynamic programming (basic concepts, sequential decision making under uncertainty, understanding the curse of dimensionality, stochastic and deterministic shortest paths algorithms)
  • Basics of neural networks architectures and training
  • Basics of simulation and stochastic iterative algorithms
  • Basics on approximate DP with cost-to-go function approximation (reinforcement learning)
  • Case studies